
Calibrating the Labmaster

Carolyne Pickler, Neil Edelman

February 5, 2007

Abstract

The two channels of the DAC (Digital to Analog Convert-
ers) and the four of the ADC (Analog to Digital Converters)
of the Labmaster unit were calibrated. These calibrations
yielded a linear relationship between the voltage outputed
by the DAC and the inputed DAC number. The same was
true of the relationship between the outputed ADC number
and the inputed voltage. With these calibrations, a software
function generator was written using Labmaster for output
that could create sine, square, sawtooth, and triangle waves
dependent on user selected amplitude and frequency.

1 Introduction

The DACs and ADCs were calibrated. This calibration de-
termined a relationship between the DAC or ADC number
and the voltage. The ADC and DAC numbers are 12 bit,
which means the numbers they deal with range from -2048
to 2047. The voltages are limited to a range of -10 V to
10 V[1]. Linear regression was used to calculate the rela-
tionship of the DAC or ADC number with its voltage[2].
In regression, the relationship between two variables is an-
alyzed statistically. This analysis considers one variable de-
pendent on the other. These dependent variables are thought
to be of random variation while the independent ones were
assigned. Using this knowledge, one tries to determine a re-
lationship between the two variables. In the case of linear
regression, one analyzes the linear relationship between the
two variables. To accomplish this, one must first plot the
dependent variables as a function of the independent ones.
By examining this graph one can determine what type of
regression is suitable. If the relation between the two vari-
ables appears to be linear then it can be described by the
following equation.

y = a + bx (1)

wherey represents the dependent variable,x represents the
independent variable,a is they intercept andb is the slope
of line that is representative of the relationship betweenx

andy. With the following equation, one can calculate the
slope.

b =
y2 − y1

x2 − x1

(2)

In equation 2,(x1, y1) and(x2, y2) represent points on the
line describing the relation ofy to x. Since a and b are
constant, if we know one of the variables,x or y, then we
can determine the other[3]. This linear regression allowed
us to calibrate the DACs and ADCs. To produce various
waveforms, such as sine, square, sawtooth, and triangle,
with our software function generator, we need to under-
stand how these functions are produced. A sine wave is
described by the following equation.

y = a sin((ωt) + θ) (3)

wherea is the amplitude,ω is the angular frequency, and
θ is the phase angle. It takes one period, the angular fre-
quency divided by twoπ, to complete one cycle[4]. The
square wave alternates periodically and instantly between
two levels [5]. The sawtooth wave increases linearly and
then drops sharply [6]. For the triangle wave, it increases
linearly for sometime and then decreases in the same lin-
ear fashion for the same amount of time[7]. For our soft-
ware function generator, the amplitude and frequency of
each waveform is determined by the user. The amplitude
is the maximum displacement from equilibrium while the
frequency is the number of oscillations per second[8]. The
importance of calibrating the Labmaster is evident when
trying to create a software function using the Labmaster as
an input. The calibration allows us to compare with val-
ues taken from another unit because they are all calibrated
with respect to the same standard. It also allows us to know
the error on our measurements and be able to use these val-
ues for othe measurements. Finally, it allows us to be able
to determine what value we must enter to obtain a specific
desired result.

2 Experimental Methods

To calibrate each channel of the DAC, the desired channel
to calibrate was attached to the multimetre. Between -2048
and 2047 and in steps of 16, DAC numbers were inputed
to the DAC and the outputed voltage was measured on the
multimetre and recorded. When calibrating each channel
of the ADC, we connected the channel to be calibrated to
one of the already calibrated DAC channels. By connected
these two, we would be able to know what the inputed

1



voltage to the ADC was as we measured its ADC number
while we ran through the same 16 steps we did to calibrate
the DAC. To produce the waveforms, the DAC channel 0
was attached to the oscilloscope’s source to act as a timing
trigger while the first channel was attached to the oscillo-
scope’s second channel to act as the input.

3 Results

To be able to calibrate the DAC channels, zero and one, we
plotted the DAC input number as a function of its output
voltage. The inputed DAC numbers ranged from -2048 to
2047 [1]. We divided them up into steps of 16 for increased
accuracy. For DAC channel zero,

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-2500-2000-1500-1000 -500  0  500  1000  1500  2000  2500

V
ol

ta
ge

 (
V

ol
ts

)

DAC Number

DAC 0
Best Fit

Figure 1: The DAC 0 input numbers vs. the Voltage read
from the DAC.

Figure 1 shows that there appears to be a linear rela-
tionship between the DAC number and the voltage. It also
allows us to see that the DAC is limited to voltages of 0 to
10 V. To verify this assumption of linearity, we plotted the
residual voltage as a function of the DAC number.

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-2500-2000-1500-1000 -500  0  500  1000 1500 2000 2500D
iff

er
en

ce
 B

et
w

ee
n 

A
ct

ua
l a

nd
 P

ro
je

ct
ed

 (
V

ol
ts

)

DAC Number

DAC 0

Figure 2: The residual DAC 0 when the best fit is applied.

Figure 2 shows that the residual remains around the
zero of the y-axis, which confirms the supposed linear rela-
tionship between the voltage and DAC number. When the
voltage and DAC numbers were inputed into Linfit, a pro-
gramme calculating linear regression, we got the following
equation.

VDAC = a + bNDAC (4)

whereVDAC represents the voltage outputed by the DAC
and NDAC is the inputed DAC number;a = 4.9783 ±

0.0001 V; b = 0.0024414 ± 1.3 × 10−7 V. For the other
DAC channel, the following figure was obtained.

-15

-10

-5

 0

 5

 10

-2500-2000-1500-1000 -500  0  500  1000  1500  2000  2500

V
ol

ta
ge

 (
V

ol
ts

)

DAC Number

DAC 1
Best Fit

Figure 3: The DAC 1 input numbers vs. the Voltage read
from the DAC.

As with Figure 1, it appears that the relationship be-
tween the voltage and the DAC number is linear but to en-
sure this, we again ploted the residual as a function of the
DAC number as seen in the figure below. The above figure
also shows us that this DAC is limited to voltages between
-10 V and 10 V.

2



-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-2500-2000-1500-1000 -500  0  500  1000 1500 2000 2500D
iff

er
en

ce
 B

et
w

ee
n 

A
ct

ua
l a

nd
 P

ro
je

ct
ed

 (
V

ol
ts

)

DAC Number

DAC 1

Figure 4: The residual DAC 1 when the best fit is applied.

Figure 4 shows that the residual voltage is centred around
the zero of the y-axis. This supports the assumption that
the voltage and the DAC number are linearly related. One
can also see in figures 2 and 4 that the large error bars
are inclined up while the smaller ones are inclined down.
This shows the inconsistency of the thing we are measur-
ing with, in this case the multimetre; there is no way to im-
prove this result, as it will always occur. We can also see in
these figures that the error bars changed size, small to large,
when we went from 3 significant figures to only two. As
with the zero channel, when the voltage and DAC numbers
were inputed into Linfit, we got the following equation.

VDAC = a + bNDAC (5)

a = −0.0208±0.0001 V; b = 0.005±0.005 V. To calibrate
the ADC channels, zero through three, each channel was
attached to each channel of the DAC. Going through the
same steps of 16, as with the DAC calibration, we plotted
the voltage outputed from the DAC, the input to the ADC,
as a function of the ADC number outputed. For the ADC
and DAC zero channels, we got the following figure.

-500

 0

 500

 1000

 1500

 2000

 2500

-1  0  1  2  3  4  5  6  7  8  9  10

A
D

C

DAC (Volts)

DAC 0 with ADC 0

Figure 5: Connecting the DAC 0 with the best fit applied to
the ADC 0 giving a unitless ADC number.

As seen in this graph, the relationship between the volt-
age and the ADC number is linear. When these values were
inputed into Linfit, we got the following relationship.

NADC = 0.70± 0.03+ ((204.6920± 0.0006)V −1)VADC

(6)
whereVADC is the voltage inputed to the ADC andNADC

is the outputed ADC number. The same DAC channel was
then connected to channel one of the ADC. This produced
the following figure.

-500

 0

 500

 1000

 1500

 2000

 2500

-1  0  1  2  3  4  5  6  7  8  9  10

A
D

C

DAC (Volts)

DAC 0 with ADC 1

Figure 6: Connecting the DAC 0 with the best fit applied to
the ADC 1 giving a unitless ADC number.

As with the other ADC channel, the relationship is lin-
ear and is represented by the following relationship, which
was derived using Linfit.

NADC = 0.767±0.003+((204.6880±0.0006)V −1)VADC

(7)

3



For channel 2 of the ADC and the same DAC channel,
we got the following figure.

-500

 0

 500

 1000

 1500

 2000

 2500

-1  0  1  2  3  4  5  6  7  8  9  10

A
D

C

DAC (Volts)

DAC 0 with ADC 2

Figure 7: Connecting the DAC 0 with the best fit applied to
the ADC 2 giving a unitless ADC number.

The linear relationship describing this, as determined
by Linfit, can be seen in the equation below.

NADC = 0.686±0.003+((204.7000±0.0006)V −1)VADC

(8)
Finally, the zero channel of the DAC was connected to the
third channel of the ADC.

-500

 0

 500

 1000

 1500

 2000

 2500

-1  0  1  2  3  4  5  6  7  8  9  10

A
D

C

DAC (Volts)

DAC 0 with ADC 3

Figure 8: Connecting the DAC 0 with the best fit applied to
the ADC 3 giving a unitless ADC number.

This figure shows a linear relationship between the in-
put and output which can be described by the following
equation.

NADC = 0.782±0.003+((204.6910±0.0006)V −1)VADC

(9)

For ADC channel zero and DAC channel one, we got
the following figure.

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-10 -8 -6 -4 -2  0  2  4  6  8  10

A
D

C

DAC (Volts)

DAC 1 with ADC 0

Figure 9: Connecting the DAC 1 with the best fit applied to
the ADC 0 giving a unitless ADC number.

We can see in the above figure a linear relationship be-
tween the voltage and ADC number. This can be described
by the following equation.

NADC = 1.047±0.002+((204.6700±0.0003)V −1)VADC

(10)
For the same DAC channel attached to channel one of

the ADC,

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-10 -8 -6 -4 -2  0  2  4  6  8  10

A
D

C

DAC (Volts)

DAC 1 with ADC 1

Figure 10: Connecting the DAC 1 with the best fit applied
to the ADC 1 giving a unitless ADC number.

The linear relationship seen in the above figure can be
described by the following equation.

NADC = 1.117±0.002+((204.6640±0.0003)V −1)VADC

(11)

4



The linear relationship between channel 2 of the ADC and
channel 1 of the DAC is seen in the following figure.

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-10 -8 -6 -4 -2  0  2  4  6  8  10

A
D

C

DAC (Volts)

DAC 1 with ADC 2

Figure 11: Connecting the DAC 1 with the best fit applied
to the ADC 2 giving a unitless ADC number.

The observed relationship is described in the following
equation.

NADC = 1.096±0.002+((204.6640±0.0003)V −1)VADC

(12)
Finally, the DAC was attached to the third channel of

the ADC.

-2500

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

-10 -8 -6 -4 -2  0  2  4  6  8  10

A
D

C

DAC (Volts)

DAC 1 with ADC 3

Figure 12: Connecting the DAC 1 with the best fit applied
to the ADC 3 giving a unitless ADC number.

The relationship seen in the above figure is linear and
can be explained by the following equation.

NADC = 1.223±0.002+((204.6550±0.0003)V −1)VADC

(13)
For each ADC calibration, 256 values were taken to get the
uncertainty of the measurement.

4 Discussion

The DAC and ADC were calibrated. In each case, the rela-
tionship between the voltage and the ADC or DAC num-
ber was found to be linear, as seen in figures 1, 3, and
5 through 12. We discovered by plotting the voltage as a
function of DAC number what the voltage limits were for
each DAC channel. For channel 0, those limits were 0 to
10 V while those for channel 1 are -10 V to 10 V. The pre-
cision of the DAC is to within a half of the least-significant
bit. This means it is dependent on what we’re using to
measure. When examining the linear relation equations for
each ADC channel with a specific DAC channel, one can
see that they are similar. For our software function genera-
tor, there are limitations on the user inputed amplitude and
frequency. The amplitude is limited by the voltage limit
of the channel. In the case of our function generator, the
amplitude is limited to -10 V to 10 V. For frequency, it is
limited to a value less than half the sampling frequency of
115000 Hz and to a value greater than 10 Hz.

5 Concusion

Once calibrated, we were able to determine that the ADC
and DAC are governed by linear relationships between the
voltage and the DAC or ADC number. The DAC chan-
nels also have voltage limits, channel 0 is between 0 and
10 V while channel 1 is between -10 V and 10 V. The in-
puted voltage values of the ADC dependent on the limita-
tions of the connected DAC channel. The limitations on the
ADC output are -2048 to 2047, which are those for a 12 bit
device. This calibration proved useful when creating the
software function generator. This function generator uses
the Labmaster as input and having user defined amplitude
and frequency. We determined that these have limitations
placed upon them. The frequency was limited to being be-
low half of the sampling frequency and above 10 Hz. The
amplitude must remain within the DAC channel’s voltage
limit.

References

[1] Labmaster DMA Handbook, pages 13–3. Scientific So-
lutions Inc., 1987.

[2] O. Kempthorne K. Hinkelmann.Design and Analysis
of Experiments, pages 60 – 74. John Wiley & Sons,
1994.

[3] S. Bernstein and R. Bernstein.Elements of Statistics II:
Inferential Statistics, page 334. McGraw Hill, 1999.

[4] J. Edminister M. Nahvi.Electric Circuits, page 103.
McGraw Hill, 2003.

5



[5] J. Edminister M. Nahvi.Electric Circuits, page 102.
McGraw Hill, 2003.

[6] J. Edminister M. Nahvi.Electric Circuits, page 420.
McGraw Hill, 2003.

[7] J. Edminister M. Nahvi.Electric Circuits, page 422.
McGraw Hill, 2003.

[8] P. Tipler. Physics for Scientists and Engineers, page
404. Worth Publishers, 1999.

6



A DAC Values: dac.h

/* our eqiupment DAC, by experiment, y = a + bx where y is volts */
const static double a[] = {
4.97831,
-0.0207601

};
const static double aSigma[] = {
0.000145044,
0.0001258

};
const static double b[] = {
0.00244137,
0.00488303

};
const static double bSigma[] = {
0.000000133962,
0.000000182228

};
const static double rChiSq[] = {
0.391955,
0.317828

};

B Programme that Calculates the DAC: dac.c

/* this calculates the DAC number based on the DAC and the Voltage */

#include <stdio.h> /* [f]printf */
#include <stdlib.h> /* sscanf */
#include "dac.h"

/* prints off the Ndac based on the voltage */
int main(int argc, char **argv) {
int n;
double Vdac, Ndac;

/* initialize arguments */
if(argc <= 2) { fprintf(stderr, "Usage: dac <dac> <value>\n"); return 1; }
if(sscanf(argv[1], "%d", &n) != 1) {

fprintf(stderr, "Ca’n’t parse DAC.\n");
return 1;

}
if(n < 0 || n > 1) { fprintf(stderr, "DAC out-of-bounds.\n"); return 1; }
if(sscanf(argv[1], "%lf", &Vdac) != 1) {

fprintf(stderr, "Ca’n’t parse input Voltage.\n");
return 1;

}

/* Vdac = a + (b * Ndac); */
Ndac = (Vdac - a[n]) / b[n];
printf("%g\n", Ndac);

7



return 0;
}

C Programme that Connects DAC to the ADC: adc.c

/* connect the DAC to to ADC and call this with adc <dac> <adc> to get data
MUST be linked with the Labmaster! eg
gcc -Wall -O3 -ansi -pedantic -lm -llabmaster -o adc adc.c */

#include <stdio.h> /* [f]printf */
#include <stdlib.h> /* sscanf */
#include <math.h> /* sqrt */
#include <labmaster.h> /* labmaster calls */
#include "dac.h"

const static int dacStep = 16;
const static int iterations = 256;

int main(int argc, char **argv) {
int dac, adc, dacIn, iter;
double dacOut, adcOut, adcErr, adcUnc, sum, sumSq;

/* initialize arguments */
if(argc < 3) { fprintf(stderr, "Usage: adc <dac> <adc>\n"); return 1; }
if(sscanf(argv[1], "%d", &dac) != 1) {

fprintf(stderr, "Ca’n’t parse DAC.\n");
return 1;

}
if(dac < 0 || dac > 1) { fprintf(stderr, "DAC out-of-bounds.\n"); return 1; }
if(sscanf(argv[2], "%d", &adc) != 1) {

fprintf(stderr, "Ca’n’t parse ADC.\n");
return 1;

}
if(adc < 0 || adc > 3) { fprintf(stderr, "ADC out-of-bounds.\n"); return 1; }

/* "This step is critical," OK */
labmaster_initialize();

/* connect DAC to ADC */
for(dacIn = -2048; dacIn < 2048; dacIn += dacStep) {

/* dac output */
out_dac(dac, dacIn);
/* dac translated to volts */
dacOut = a[dac] + (b[dac] * dacIn);
/* adc out, average, error */
for(iter = 0, sum = 0, sumSq = 0; iter < iterations; iter++) {
adcOut = in_adc(adc);
sum += adcOut;
sumSq += adcOut * adcOut;

}
adcOut = sum / iterations;
adcErr = sqrt(sumSq / iterations - adcOut * adcOut);
adcUnc = adcErr / sqrt(iterations);

8



/* points were getting saturated, hence if() */
if(adcUnc) printf("%g %g %g\n", dacOut, adcOut, adcUnc);

}

/* I assume this step is critical too */
labmaster_terminate();

return 0;
}

D Programme that Outputs to the Scope: drawing.c

/* programme that outputs to a scope using the "LabMaster" set of libraries;
MUST be linked with the Labmaster! eg
gcc -Wall -O3 -ansi -pedantic -lm -llabmaster -o drawing drawing.c */

#include <stdio.h> /* (f)printf stderr */
#include <stdlib.h> /* sscanf */
#include <math.h> /* sqrt */
#include <string.h> /* strncmp */
#include <labmaster.h> /* out_dac etc */
#include "dac.h"

/* prototypes */
int main(int argc, char **argv);
int VtoDAC(double v);
void fillSinwave(int *buffer, double amp, int length);
void fillTriangle(int *buffer, double amp, int length);
void fillSquarewave(int *buffer, double amp, int length);
void fillSawtooth(int *buffer, double amp, int length);
void fillCalibration(int *buffer, double amp, int length);

/* constants */
const static int timerDAC = 0; /* the timer DAC */
const static int outDAC = 1; /* the output DAC */
const static double pi = 3.141592653589793238462643383279502884197169399375105\
820974944592307816406286208998; /* etc; since ansi apperantly does’n’t define

M_PI */

/* main (duh?) */
int main(int argc, char **argv) {
void (*fn)(int *, double, int);
int i;
int length; /* length of the buffer @= the wavelength */
int *buffer;
double amp, fre;

/* initialize arguments */
if((argc > 1) && (!strncmp(argv[1], "-h", 2) || !strncmp(argv[1], "--h", 3))) {

fprintf(stderr, "Usage: drawing [sinewave|triangle|squarewave|sawtooth] ");
fprintf(stderr, "[amplitude] [frequency]\n");
return 1;

9



}

/* fill with def val */
fn = fillSinwave;
amp = 1;
length = 1024;

/* user input */
if(argc > 1) {

if (strncmp(argv[1], "sawtooth", 2) == 0) fn = fillSawtooth;
else if(strncmp(argv[1], "squarewave", 2) == 0) fn = fillSquarewave;
else if(strncmp(argv[1], "triangle", 2) == 0) fn = fillTriangle;
else if(strncmp(argv[1], "sinewave", 2) == 0) fn = fillSinwave;
else if(strncmp(argv[1], "calibration", 2) == 0) fn = fillCalibration;
else {
fprintf(stderr, "%s?\n", argv[1]);
return 1;

}
}
if(argc > 2) {

if(sscanf(argv[2], "%lg", &amp) != 1) {
fprintf(stderr, "Ca’n’t parse number; use --h for help.\n");
return 1;

}
fprintf(stderr, "Using amp = %g.\n", amp);

}
if(argc > 3) {

if(sscanf(argv[3], "%lg", &fre) != 1) {
fprintf(stderr, "Ca’n’t parse number; use --h for help.\n");
return 1;

}
if(fre <= 10) {
fprintf(stderr, "Frequency must be 10.\n");
return 1;

}
length = 115000 / (double)fre;
fprintf(stderr, "Using fre = %g, len = %d.\n", fre, length);

}

buffer = malloc(length * sizeof(int));
if(!buffer) {

fprintf(stderr, "Wavelength too big for memory allocation: %d.", length);
return 0; /* mucho scecthy! */

}

/* call *fn to fill the buffer */
(*fn)(buffer, amp, length);

/* "This step is critical," OK */
labmaster_initialize();

/* display instuctions */
printf("Connect DAC-%d to the timer trigger, ext.\n", timerDAC);
printf("Connect DAC-%d to Y.\n", outDAC);

10



/* system dependent */
printf("Ctrl-C to exit?\n");

/* display infinitaly (FIXME: timer?) */
for( ; ; ) {

/* for every buffer[i] */
for(i = 0; i < length; i++) {
/* -’ve pulse to trigger scope */
out_dac(timerDAC, (i == 0) ? (-2048) : (2047));
/* this is the output */
out_dac(outDAC, buffer[i]);

}
}

/* I assume this step is critical too */
/* FIXME: but it does’n’t get executed ever since Ctrl-C is the

only way to end */
labmaster_terminate();

/* the fn that’s never called */
free(buffer);

return 0;
}

/* volts to DAC; in dac.h */
int VtoDAC (double v) { return (v - a[outDAC]) / b[outDAC]; }

/* sinwave */
void fillSinwave(int *buffer, double amp, int length) {
int i;
double x;

for(i = 0; i < length; i++) {
x = i * 2 * pi / length;
buffer[i] = VtoDAC(sin(x) * amp);

}
}

/* triangle */
void fillTriangle(int *buffer, double amp, int length) {
int i;
double x;

for(i = 0; i < length; i++) {
x = i / (double)length;
if(x < .5) buffer[i] = VtoDAC((-1 + 4 * x) * amp);
else buffer[i] = VtoDAC(( 3 - 4 * x) * amp);

}
}

/* squarewave */
void fillSquarewave(int *buffer, double amp, int length) {
int i;

11



double x;

for(i = 0; i < length; i++) {
x = i / (double)length;
if(x < .5) buffer[i] = VtoDAC( amp);
else buffer[i] = VtoDAC(-amp);

}
}

/* sawtooth */
void fillSawtooth(int *buffer, double amp, int length) {
int i;
double x;

for(i = 0; i < length; i++) {
x = i / (double)length;
buffer[i] = VtoDAC((-1 + 2 * x) * amp);

}
}

/* calibration; FIXME: calibration is not implemented, the only thing to do
is change the code, which is Bad, but suits our needs */

void fillCalibration(int *buffer, double amp, int length) {
int i;

fprintf(stderr,
"Calibration . . . sampling frequency = 2 measured frequency.\n");
for(i = 0; i < length; i++) {

buffer[i] = (i & 1) ? (2047) : (-2048);
}

}

12


