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Abstract

Given the data supplied for this instructional lab, several
operations were performed upon it. These values represent
an unknown signal.

1 Introduction

Using programming language, “C”, programmes to calcu-
late the square, square-root, derivative, integral, and root-
mean-square of the given unknown signal were written.
The value of these programmes is to be able to calculate
these operations on large amounts of data in a short amount
of time.

2 Theory

The derivative was calculated using,

slope =
iny − prevy

inx − prevx

(1)

This equation calculates the slope of the given data, which
is equivalent to its derivative. The integral was calculated
using

area =
1

2
(inx − prevx)(iny − prevy) (2)

This is the midpoint method to calculate the area. The area
was added to the previous value, resulting in a good ap-
proximation of the integal of the given the data.

3 Data
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Figure 1: Square of the Signal as a Function of Time

All the values seen in Figure 1 are positive, as this is a
square function.
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Figure 2: Square-Root of the Signal as a Function of Time

All the values seen in Figure 2 are positive, as this is a
square-root function.
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Figure 3: Derivative of the Signal as a Function of Time

The distribution of the values in Figure 3 resembles a
cosine function. This is expected.
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Figure 4: Integral of the Signal as a Function of Time

As expected, the distribution of the values in Figure 4
resembles a negative cosine function.
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Figure 5: Root-Mean-Square of the Signal as a Function of
Time

The values seen in Figure 5 are all positive, which is
expected because the root-mean-square is the square root
of the square of the mean of the dependent variable.

4 Conclusions

As a result of performing the operations on the unknown
signal, we were able to determine that it is a sinusoidal sig-
nal. This can be seen by examining the results obtained
when the derivative of the signal was taken. As expected
from a sinusoidal signal, the result is a cosine. The same is
true when the integral of the signal was taken. As seen in
Figure 4, the result is a negative cosine wave, which coin-
cides with what is expected from the integral of a sinusoidal
function. Possible sources for this signal include anything
that exhibits simple harmonic motion, such as a pendulum,
or an everyday electrical outlet.
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A Programme to Compute the Square of the Dependent Variable: square.c

#include <stdio.h>

/*
* A very simple program to read in three columns X, Y, Z
* and print out them back out again
*
*/

int main (void)
{
char line [256]; /* used to buffer a whole line of input */

double in_x, in_y, in_e; /* input variables */
double out_x, out_y, out_e; /* output variables */
double prev_x, prev_y, prev_e; /* transitory variables */

int counter = 0, rc; /* used for debugging bad data input */

while (fgets (line, 256, stdin)) { /* read a whole line into buffer */
counter++; /* increment line counter */
rc = sscanf (line, "%lf %lf %lf", &in_x, &in_y, &in_e); /* attempt to parse variables */
if (rc != 3) { /* if didn’t find all three protest and exit */
fprintf (stderr, "Less than three floats on line %i:\n\"%s\"\n", counter, line);
return 1;

}

out_x = in_x; /* calculate */
out_y = in_y * in_y;
out_e = 2 * in_y * in_e;

printf ("%g\t%g\t%g\n", out_x, out_y, out_e); /* calculate and output result */

prev_x = in_x; /* save the previous triplet */
prev_y = in_y;
prev_e = in_e;

}
fprintf (stderr, "Processed %i lines\n", counter); /* babble some statistics */
return 0;

}

B Programme to Compute the Square-Root of the Dependent Variable: sqrt.c

#include <stdio.h>
#include <math.h>

/*
* A very simple program to read in three columns X, Y, Z
* and print out them back out again
*
*/

3



int main (void)
{
char line [256]; /* used to buffer a whole line of input */

double in_x, in_y, in_e; /* input variables */
double out_x, out_y, out_e; /* output variables */
double prev_x, prev_y, prev_e; /* transitory variables */

int counter = 0, rc; /* used for debugging bad data input */

while (fgets (line, 256, stdin)) { /* read a whole line into buffer */
counter++; /* increment line counter */
rc = sscanf (line, "%lf %lf %lf", &in_x, &in_y, &in_e); /* attempt to parse variables */
if (rc != 3) { /* if didn’t find all three protest and exit */
fprintf (stderr, "Less than three floats on line %i:\n\"%s\"\n", counter, line);
return 1;

}

out_x = in_x; /* calculate */
out_y = sqrt(in_y);
out_e = in_e / (2 * out_y);

printf ("%g\t%g\t%g\n", out_x, out_y, out_e); /* calculate and output result */

prev_x = in_x; /* save the previous triplet */
prev_y = in_y;
prev_e = in_e;

}
fprintf (stderr, "Processed %i lines\n", counter); /* babble some statistics */
return 0;

}

C Programme to Compute the Derivative of the Dependent Variable: deriv.c

#include <stdio.h>
#include <math.h>

/*
* A very simple program to read in three columns X, Y, Z
* and print out them back out again
*
*/

int main (void)
{
char line [256]; /* used to buffer a whole line of input */

double in_x, in_y, in_e; /* input variables */
double out_x, out_y, out_e; /* output variables */
double prev_x = 0, prev_y = 0, prev_e = 0; /* transitory variables */

int counter = 0, rc; /* used for debugging bad data input */
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while (fgets (line, 256, stdin)) { /* read a whole line into buffer */
counter++; /* increment line counter */
rc = sscanf (line, "%lf %lf %lf", &in_x, &in_y, &in_e); /* attempt to parse variables */
if (rc != 3) { /* if didn’t find all three protest and exit */
fprintf (stderr, "Less than three floats on line %i:\n\"%s\"\n", counter, line);
return 1;

}

out_x = in_x; /* calculate */
out_y = in_y;
out_e = in_e;

if(counter > 1) {
double a, b; /* temp var */

/* calculate the derivative */
out_y = (in_y - prev_y) / (in_x - prev_x);
a = in_e / (in_x - prev_x);
b = prev_e / (prev_x - in_x);
out_e = sqrt(a * a + b * b);

printf ("%g\t%g\t%g\n", out_x, out_y, out_e); /* calculate and output result */
}

prev_x = in_x; /* save the previous triplet */
prev_y = in_y;
prev_e = in_e;

}
fprintf (stderr, "Processed %i lines\n", counter); /* babble some statistics */
return 0;

}

D Programme to Compute the Integral of the Dependent Variable: int.c

#include <stdio.h>
#include <math.h>

/*
* A very simple program to read in three columns X, Y, Z
* and print out them back out again
*
*/

int main (void)
{
char line [256]; /* used to buffer a whole line of input */

double in_x, in_y, in_e; /* input variables */
double out_x, out_y, out_e; /* output variables */
double prev_x = 0, prev_y = 0, prev_e = 0; /* transitory variables */
double integral = 0; /* used to calculate the running int(0, sin(x)) */

int counter = 0, rc; /* used for debugging bad data input */

5



while (fgets (line, 256, stdin)) { /* read a whole line into buffer */
counter++; /* increment line counter */
rc = sscanf (line, "%lf %lf %lf", &in_x, &in_y, &in_e); /* attempt to parse variables */
if (rc != 3) { /* if didn’t find all three protest and exit */
fprintf (stderr, "Less than three floats on line %i:\n\"%s\"\n", counter, line);
return 1;

}

out_x = in_x; /* calculate */
out_y = in_y;
out_e = in_e;

if(counter > 1) {
double a, b; /* temp var */

/* calculate the derivative */
out_y = (in_x - prev_x) * (in_y + prev_y) / 2;
integral += out_y;
a = (in_x - prev_x) * in_e / 2;
b = (-prev_x + in_x) * prev_e / 2;
out_e = sqrt(a * a + b * b);

printf ("%g\t%g\t%g\n", out_x, integral, out_e); /* calculate and output result */
}

prev_x = in_x; /* save the previous triplet */
prev_y = in_y;
prev_e = in_e;

}
fprintf (stderr, "Processed %i lines\n", counter); /* babble some statistics */
return 0;

}

E Programme to Compute the Mean of the Dependent Variable: mean.c

#include <stdio.h>

/*
* A very simple program to read in three columns X, Y, Z
* and print out them back out again
*
*/

int main (void)
{
char line [256]; /* used to buffer a whole line of input */

double in_x, in_y, in_e; /* input variables */
double out_x, out_y, out_e; /* output variables */
double prev_x, prev_y, prev_e; /* transitory variables */

int counter = 0, rc; /* used for debugging bad data input */
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while (fgets (line, 256, stdin)) { /* read a whole line into buffer */
counter++; /* increment line counter */
rc = sscanf (line, "%lf %lf %lf", &in_x, &in_y, &in_e); /* attempt to parse variables */
if (rc != 3) { /* if didn’t find all three protest and exit */
fprintf (stderr, "Less than three floats on line %i:\n\"%s\"\n", counter, line);
return 1;

}

out_x = in_x; /* calculate */
out_y = in_y / in_x;
out_e = in_e / in_x;

printf ("%g\t%g\t%g\n", out_x, out_y, out_e); /* calculate and output result */

prev_x = in_x; /* save the previous triplet */
prev_y = in_y;
prev_e = in_e;

}
fprintf (stderr, "Processed %i lines\n", counter); /* babble some statistics */
return 0;

}
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