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Abstract

The Geiger counter ran for several intervals creating vari-
ous mean distributions. The chi-squared of each of these
values was taken and using this information, it was deter-
mined whether a Poisson or Gaussian standard form best fit
the distribution. Upon analysis of theχ2 values, the Pois-
son form was the best fit for the distribution created by the
Geiger counter till a large mean distribution, one of about
20, was reached.

1 Introduction

When a radioactive source is brought into contact with the
Geiger counter, a random distribution occurs. By calculat-
ing theχ2 value for each measured point, we were able to
attempt to fit the distribution with a Gaussian or Poisson
form. The period of measurement was changed to allow us
to examine various mean distributions and to see how these
changes affected which form was the best fit. Our goal is
to determine which standard form best fits the random ra-
dioactive decay.

2 Theory

To be able to determine which standard form, Gaussian or
Poisson, best fits the data, we took the mean of each replica
and column. The mean was calculated using equation 1.

x̄ =
1

n
(

n∑
i=1

xi) (1)

In equation 1,xi represents each value and n is the total
amount of values. The variance of each replica and column
was also calculated with equation 2.

σ2 =
1

n
(

n∑
x=1

xi − x̄)2 (2)

In this equation we sum up the square of all values,xi,
and subtract the square of the mean then divide by the total
number of values. These values, the mean and the vari-
ance, allow us to calculate the Gaussian and Poisson. To

calculate the Poisson, we used the following equation.

P (v) =
uv

v!
(e−u) (3)

In equation 3, the v is the bin number and u can represent
the mean or variance because in this case they should be
equivalent. When we calculated Poisson, the replica mean
was used for u. To calculate the Gaussian, equation 4 was
used.

P (v) =
1

σ
√

2π
(e−

1

2 (
v − u

σ
)2) (4)

In equation 4, u represents the replica mean,σ is the square
root of the variance, which is also referred to as the standard
deviation, and v is the bin number. To determine which is
a better fit, theχ2 test was used.

χ2 =
1

n
(

n∑
i=0

(Oi − Ei)
2

σ2

i

) (5)

In equation 5,Oi represents the observed values, which
means the measured values from the Geiger counter andσ2

i

are the replica variance values.Ei represents the expected
values, which is where we compare the measured values
to the expected Gaussian or Poisson. For comparison to
the Poisson,Ei would be the expected Poisson value deter-
mined from equation 3. The same is true when comparing
to the Gaussian except we determine theEi value using
equation 4. Equation 4 is how to calculate the Gaussian but
we must take into consideration the values that are nega-
tive. This is done using the error function seen in equation
6.

erf(y) =
2
√

π
(

∫ y

0

e−x2

dx) (6)

With some manipulations, equation 4 is put into equation
6. We plug in the exponent of equation 4 in for−x2 and
then take its integral. This allows us to make sure we take
into account all points when calculating the Gaussian. This
is extremely important when looking at low mean distribu-
tions.

3 Experimental Methods

A small 137Cs gamma source was placed near the Geiger
counter. To get various mean distributions, we varied the
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period over which we measured. For larger periods, we
got large mean distributions and for smaller ones, we got
smaller means.

4 Results

We calculated the Gaussian and Poisson form for three main
distributions, low (2), medium (10), and large (22). To able
to determine which form was the best fit, the data was com-
pressed. This compression is crucial because it allows us to
improve the quality of our data by eliminating some of the
noise. The importance of this compression can be seen in
the following three figures.
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Figure 1: The Poisson and Gaussian Fits for the Low Mean
Distribution with a Compression Ratio of One

As seen in this figure, it is difficult to distinguish which
form is the best fit when we only have a compression ratio
of one. This can also be seen when examining the failure
rates, which are 8 percent for the Gaussian and 7 percent
for the Poisson.
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Figure 2: The Poisson and Gaussian Fits for the Low Mean
Distribution with a Compression Ratio of Five

In Figure 2, we can see that as we compress our data
by a ratio of 5, it is easier to distinguish which form best
fits. In this case for the low mean distribution, the Gaussian
has 22 percent of failures and the Poisson has 8 percent of
failures.
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Figure 3: The Poisson and Gaussian Fits for the Low Mean
Distribution with a Compression Ratio of Twenty

With a compression ratio of 20, we can really distin-
guish the Poisson from the Gaussian, as seen above. We
can see that the Gaussian has a large failure rate of 86 per-
cent while the Poisson only has a failure rate of 13%. To
determine which form was the best fit for the low mean
distribution, we plotted the following figure.
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Figure 4: The Gaussian and Poisson Fits for the Low Mean
Distribution

When comparing theχ2 values of this case, which are
illustrated in Figure 4, we get 22 percent of failures for the
Gaussian and 8 percent of failures for the Poisson. This
is with a compression ratio of 5. Compressing the data is
important because it allows us to improve the quality of
our data by eliminating some of the noise. The failures
of the χ2 test indicate the amount of times the calculated
χ2 value for the Poisson and Gaussian are greater than the
expectedχ2 value at a 10% failure rate. This means that for
the Gaussian or Poisson to pass the test, which means that
they could represent the distribution, it has to have only
10% or less of itsχ2 values greater than the expectedχ2

value for that particular form. These expectedχ2 values
are dependent on the degrees of freedom. For the medium
mean distribution,
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Figure 5: The Gaussian and Poisson Fits for the Medium
Mean Distributions

When comparing theχ2 values of this case, illustrated

in Figure 5, we get 16 percent of failures for the Gaussian
and 10 percent of failures for the Poisson. This is for a
compression ratio of 5. For the high mean distribution,
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Figure 6: The Gaussian and Poisson Fits for the High Mean
Distributions

Upon examination of this case’s (Figure 6)χ2 values,
we find that the Gaussian and Poisson have 13 percent of
failures. Poisson has a neccecary condition that the column
variance is equal to its mean, which we checked using the
following figures.
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Figure 7: The Logarithm of the Column Variance as a
Function for the Column Mean for Low Values
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Figure 8: The Logarithm of the Column Variance as a
Function for the Column Mean for Mid Values
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Figure 9: The Logarithm of the Column Variance as a
Function for the Column Mean for High Values

5 Discussion

As seen in Figure 1 through 3, compressing our data al-
lowed us to eliminate some noise and determine which form
best fits the data. As Figure 1 illustrates, without compres-
sion, we wouldn’t be able to determine whether the Gaus-
sian or Poisson best fit the data. By examining Figure 4,
with a compression ratio of 5, and the amount of failures
of theχ2 test for the Poisson and Gaussian forms, we can
conclude that the Poisson form is the best fit for this low
mean distribution. The same can be said for the medium
mean distributions when examining Figure 5 and its failure
rates. On the other hand, when examining the high mean
distributions illustrated in Figure 6 and its failure rates,
it is difficult to draw the same conclusions. This occurs

because as explained in Introductory Mathematical Statis-
tics for large mean distributions, the Gaussian and Pois-
son forms become very similar. In these cases, the Poisson
is well approximated around the peak by a Gaussian [1].
This explains why at large means, it is difficult to deter-
mine whether the Gaussian or Poisson is the better fit. We
begin to see the difficulty of using a Poisson form in Figure
9. This illustrates how the mean and variance are beginning
to differ at high mean distributions. As seen in equation 3,
this isn’t the case for the Poisson form, where the mean
and variance are always equivalent. We can really see that
the Poisson form is a good fit by examining Figures 7 and
8. These figures shows a log-linear relationship between
the column mean and variance. This means that the col-
umn mean and variance are equivalent. This is true for the
Poisson form, as seen in Equation 3.

6 Conclusions

These results lead us to the conclusion that compression is
necessary to eliminate noise and improve the quality of our
data. It can also be concluded that for low to medium mean
distributions, a Poisson form is the best fit. The same can-
not be said when examining large mean distributions. For
these cases, one cannot determine whether the Gaussian or
Poisson is the better fit.
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