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Abstract
This experiment investigated the hysteresis curve of a toroi-
dal iron ring and found the energy required to bring the
material around a hysteresis loop for a given maximum
magnetic field. By varying the resistance in the circuit,
the relation between magnetic flux density, B, and mag-
netic field in the ring, H , was observed. The graphs of the
hysteresis curves B vs H show the lagging effect due to a
changing magnetizing force. The area enclosed by these
curves is equal to the work per unit volume. The plot of to-
tal work versus voltage indicated a linear relationship with
slope 9[1]×10−6JV −1 and y intercept 0.00011[1]J . The
Steinmetz coefficient was calculated for each trial. These
were found to be constant within error at 56800[500].

–
This experiment investigated the hysteresis curve of a

toroidal iron ring and found the energy required to bring
the material around a hysteresis loop for a given maxi-
mum magnetic field. By varying the resistance in the
circuit, the relation between current and deflection was
observed. The results show the lagging effect due to a
changing magnetizing force.

–
This experiment investigated the hysteresis curve of a

toroidal iron ring and found the energy required to bring
the material around a hysteresis loop for a given maxi-
mum magnetic field. By varying the resistance in the cir-
cuit, the relation between magnetic flux density (B) and
magnetic field in the ring (H) was observed. The graphs
of the hysteresis curves (B vs H) show the lagging effect
due to a changing magnetizing force. The area enclosed
by these curves is equal to the work per unit volume. The
plot of total work versus voltage indicated a linear rela-
tionship with slope X and Y intercept X . The Steinmetz
coefficient was calculated for each trial. These were found
to be constant within error at 57000.

1 Introduction
A demagnetized metal ring can easily be magnetized by
the presence of an external magnetic field. If we were
to plot the magnetization of the ring, B, vs the applied
magnetic field, H , we would quickly see that the metal
becomes saturated as in Figure ??. Let us suppose that
having magnetized the ring, we now wish to demagnetize
it.

Figure 1: Magnetization of Soft Iron [?]

If the metal ring happens to be made of a ferromag-
netic material, like Iron, the magnetization will in fact be
permanent, meaning that the sample will remain magne-
tized even as the external magnetic field is brought back
to zero. This is not what we would have expected; it is
this phenomenon that is known as hysteresis, which can
be described by noting that B lags behind the value of H .

There are several reasons that the hysteresis loop is
important. Firstly, the loop is unique to the metal that
the ring is composed of. In fact, hysteresis was once a
method used to determine the identity of unknown metals
and alloys. However, a more practical application of the
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hysteresis data’s uniqueness is to determine what kind of
situation a magnet made from a given substance is most
suited for. A very narrow hysteresis curve indicates that
a given substance is a temporary or soft magnet, while
fatter curves mean a more permanent, hard magnet. The
difference between these two types of magnets is that a
soft magnet will respond to a small magnetic field, while
a hard magnet is permanent and will remain magnetized
after a strong magnetic field has been applied and then
removed. Soft magnets are often used in circuits found
in places like motors, generators and transformers where
energy loss due to magnetization should be minimized.
Magnetic materials which lie between hard and soft are
used a lot in recording devices where the stability of a
hard magnet is required so that data is not lost, but a
strong magnetic field must be able to erase the previously
recorded data if desired.

–
The hysteresis loop is a signature of a magnetic ma-

terial, and is a plot of magnetization against applied mag-
netic field. Slender loops indicate temporary, or soft mag-
nets, while fatter loops indicate more permanent, hard
magnets. In this experiment, the magnetic ring was ini-
tially unmagnetized. With a current send through the ring,
it produces

The coercivity of a magnet is the magnetic field re-
quired to reduce its magnetization to zero. In 1743, Bernou-
lli developed the steel bar and horseshoe-shaped magnets
whose shape increased their coercivity, but modern mag-
netic materials have a coercivity greater than their satura-
tion magnetization and therefore resist self-demagnetization
in any shape. The strength of a permanent magnet is given
by its maximum energy product, twice the energy stored
in the magnetic field around a magnet of optimum shape.
This value doubled every twelve years during the 20th
century, but current technology is at the point where an-
other double would be difficult.

–
Hysteresis is used to describe the behavior of some-

thing that lags behind the cause that effects it. For exam-
ple, when a paper is cumpled it slowly returns towards its
original form once released but never completely regains
it. When magnetized, the iron ring shows this type of be-
havior as its magnetization lags behind the magnetizing
field applied. When the field is removed, the material re-
tains some of its magnetization. The area of the hysteresis
loop is a measure of the work required to overcome the
this molecular magnetic friction. A larger area shows that
a material behaves as more of a permanent magnet be-
cause it resists changing its magnetic alignment. The lin-
ear relationship between voltage and work suggests that

the energy required to overcome the resistance of the iron
core to changing polarity is proportional to the strength
of the magnetic field applied. The strength of the field
induced in the iron that opposes the magnetizing field in-
creases proportionally to its strength.

2 Theory
When a current is sent through the magnetizing coil, a
magnetizing field, H is created in the iron and the ring is
magnetized. This gives rise to a magnetic flux φ (in We-
bers, Wb) in the ring, which has density B (in Teslas, T ).
Changes in the current cause a change in B. A second
coil (search coil) is wound around the magnetizing coil
and connected to a galvanometer. When B changes, a mo-
mentary current is created in the search coil, which passes
through the galvanometer and is directly proportional to
the deflection in the galvanometer. H (in Ampere-turns
per meter) is calculated using

H =
NI

l
(1)

where N is the number of turns in the magnetizing
coil, I is the current (in Amperes, A) and l is the circum-
ference of the iron ring (m). B is calculated using the
equation,

B =
Nsφsd

nAds
(2)

here Nsφs is the calibrated value for the Hibbert stan-
dard (in this case the value is 1.72mWb), d is the gal-
vanometer reading (m), n is the number of turns on the
search coil, A is the area of the search coil (m) and ds

is the initial half-amplitude reading of the galvanometer
(m).

To obtain a hysteresis loop, the magnetic field, H , is
increased to saturation, then decreased to zero, then in-
creased to saturation in the reverse polarity, then brought
back to zero and finally fully re-magnetized in the original
direction. H is increased and decreased gradually (by in-
creasing and decreasing the resistance in the circuit) and
the deflection of the galvanometer needle (used to calcu-
late B) is recorded with every change in H . When B is
plotted against H , it is found that after the first magnetiza-
tion, B lags behind H . This is hysteresis and is the result
of a certain permanent magnetism in the iron. The area
enclosed by the B–H curve represents the work per unit
volume.

The work done throughout the whole process can be
found by,
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Ballistic Galvanometer-Wall-mounted, Leeds & Northrup (#11)
Damping Key (#7)
Hibbert standard flux – S2H (#6)
Plug Resistance Box (#2)
Resistance board of 14 resistors in series (#4)
Rowland Ring, cast iron F – C (#4)
Simpson DC Ammeter, Model 19, 0 – 1A
Power Supply, 0 – 24V (#9) trials 1,2,3 (#1) trials 4,5,6,7,8,9
Reversing Switch S – R (S8H)

Table 1: Equipment

W = AV (3)

where A is the area of the hysteresis loop (AWbm−3)
and V is the volume of the ring (m3). The loss of energy
(the work) is due to molecular magnetic friction in the
ring.

A relationship, discovered by Charles Steinmetz, ex-
ists between the area of the loop and the maximum applied
magnetic flux density. The relationship is,

A = η · (Bmax)1.6 (4)

where A is the area of the B–H curve in AWbm−3,
Bmax is the maximum value of the flux density (T ), and
η is the Steinmetz coefficient. The Steinmetz coefficient
is unitless, because it represents a strictly empirical rela-
tionship.

–
With a current send through the ring, a magnetizing

field, H, which magnetizes the iron. This results in a high
flux density, B, in the ring. Changes in this current cause a
momentary current in a second coil around the ring which
is connected to a galvanometre used to measure the flux
density.

3 Apparatus

4 Procedure

4.1 Demagnetizing the Coil
Hook up the coil to the demagnetizer between every trial,
according to Figure ??. Start at the left of the rheostat, the
coil is demagnetized when it has reached the right. This
should take about ten minutes.

Figure 2: Demagnetizing Circuit

4.2 Setup and Trials
Wire the circuit according to Figure ??. Once the gal-
vanometer has settled, adjust it to zero. Drop the Hibbert
standard and record the displacement. Always include in-
formation on the sense of the deflection as the sign of the
data. On our equipment, this was around 12cm. This mea-
surement is the half-amplitude reading of the galvanome-
ter. With the reversing switch set to OPEN and all the
switches on the resistance board open, the galvanometer
should be at zero.

Turn on the power supply to 12V . Set the revers-
ing switch to DIRECT and immediately record the cur-
rent and deflection. One by one, close the switches from
left to right, recording the current and deflection for each
resistor. This is point a (Figure ??). One by one, open
the switches from right to left, recording each measure-
ment. With all the switches open, set the reversing switch
to OPEN and record to deflection (the current is zero).
This is point b (Figure ??).

Taking current and deflection reading between each
step, set the reversing switch to REVERSE and succes-
sively close all the resistance switches from left to right.
When they are all closed, this is point c (Figure ??). Now
open the switches from right to left. Set the reversing
switch to OPEN. This is point d (Figure ??).

Set the reversing switch to DIRECT then close all the
switches from left to right. This point should be close to
point a (Figure ??).

Repeat steps 1, 2 and 3 for the following voltages: 6,
7, 9, 10.5, 12, and 13.5 volts.
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Calibrated Hibbert Standard Nsφs 1.72 mWb
Number of Turns Search Coil n 24
Diameter of the Ring d 0.16 m
Area of Search Coil A 0.020 m2

Ballistic Constant kb 27.85± 0.05 mTm−1

No. of Turns on Rolland Ring N 2385
Circumference of Ring l 0.50265 m
Volume of Ring V 0.0000503 m3

Table 2: Equipment Data

4.3 Plotting Graphs
For each trial, use the half-amplitude displacement to cal-
culate kb and use it, along with the data collected to cal-
culate and plot B versus H . The displacement used in
calculating B is cumulative so each displacement mea-
surement is added to the sum of all the preceding mea-
surements, taking the sign of each reading into account.
The area enclosed in the Hysteresis loop represents the
energy lost per unit volume.

Figure 3: Sketch of Hysteresis Loop

4.4 Data and Analysis

The data in Table ?? summarizes the values of various
properties of the equipment. These values were all used in
order calculate B and H from the measured current and
deflection. (See Appendix 2 for sample calculations.)

The extensive data and all the plots of B vs. H (hys-
teresis loops) can be found in Appendix 1 (Tables A1–A7
and graphs A1–A7). See Appendix 3 for the raw data. As
a prototypical sample, the plot for the 10.10V trial can be
seen below.

Figure 4: Trial 9 (10.10V )

Figure 5: Analysis of Error on B (Trial 9)

The values of B are based on the sum of the previous
deflection measurements, thus the error on each succes-
sive point on the plots grows. (See ?? and also see sample
calculations in Appendix 2 for a detailed explanation of
how this error is calculated.) This effect is shown in Fig-
ure ?? by the increasing size of the error bars around the
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Trial Voltage (V ) Area (AWbm−1) σArea Work (J) σWork

1 11.89 4.3 0.2 0.000214 0.000008
2 9.00 3.81 0.14 0.000191 0.000007
3 6.02 3.2 0.1 0.000162 0.000005
5 10.48 4.17 0.15 0.000210 0.000008
6 13.50 4.5 0.2 0.000227 0.000009
8 7.00 3.4 0.1 0.000172 0.000005
9 10.10 3.9 0.1 0.000197 0.000006

Table 3: Area and Work Data

hysteresis loop. The integrals of the hysteresis loops (area
of the loops) were needed to find the work. These val-
ues were calculated by interpolating between points with
a cubic spline and connecting the beginning and end of the
loop with a line segment to form a closed curve. Details
can be found in Appendix 2. These areas are multiplied
by the volume of the ring to find work (Equation ??), and
the results are summarized in Table ??.

The calculations required for determining the error on
the area are very detailed and can be found in Appendix 2.
Uncertainty in calculating area is due partly to the discrep-
ancies of the endpoints. Since six of the seven used trials
yielded graphs where the endpoints did not meet, the ad-
ditional area had to accounted for. Some graphs crossed
over each other, leaving a closed loop and an additional
open-ended area, while the other graphs left a single open
loop. We drew a straight line joining point a (Figure ??)
to the final point in every trial, then took the total enclosed
area.

The error on the work is depends on the error on the
area (see Appendix 2). The plot of the work vs voltage
is presented in Figure ??. This graph shows a linear re-
lationship between the voltage and the work with all the
points within experimental error of the linear least-squares
fit. Once the area of each curve was found, the Steinmetz
constant could be calculated using Equation ??. The re-
sults are summarized in Table ??.

The average value for the Steinmetz constant was found
to be 56800±500, and it is represented by the straight line
on Graph ??. The error value is based on a weighted av-
erage of the data; see Appendix ?? for details.

5 Discussion
Hysteresis is used to describe the behavior of something
that lags behind the cause that affects it. For example,

Voltage Area (AWbm−3) Bmax (T ) Steinmetz’s constant σSteinmetz′sconstant

11.89 4.2574 0.00265 57000 2000
9.00 3.8062 0.00252 55000 2000
6.02 3.2146 0.00220 58000 2000

10.48 4.1725 0.00258 58000 2000
13.50 4.5207 0.00275 57000 2000

7.00 3.4168 0.00234 55500 1600
10.10 3.9205 0.00245 59000 2000

Table 4: Steinmetz’s Constant

when a paper is crumpled it slowly returns towards its
original form but doesn’t completely regain it once re-
leased. When magnetized, the iron ring shows this type of
behavior as its magnetization lags behind the magnetizing
field applied. When the field is removed, the material re-
tains some of its magnetization. The area of the hysteresis
loop is a measure of the work required to overcome the
molecular magnetic friction. A larger area shows that a
material behaves as more of a permanent magnet because
it resists changing its magnetic alignment. The linear re-
lationship between voltage and work suggests that the en-
ergy required to overcome the resistance of the iron core
to changing polarity is proportional to the strength of the
magnetic field applied. The strength of the field induced
in the iron that opposes the magnetizing field increases
proportionally to its strength.

There were two main difficulties encountered when
taking measurements. The first was in reading the gal-
vanometer. Since the measurement is viewed, it is depen-
dent on the person who reads it. The first difficulty here is
that it is a moving scale which therefore needs to be read
at the right time. The other is that there is a discrepancy
between different people in reading very small numbers
(what some people would read as four others may read as
five, as well as a probable psychological tendency for one
to read certain numbers more often than others).

The second difficulty encountered was reading the am-
meter. The current reading should be taken immediately
after the switch has been opened or closed because the
current values jump, then continue to climb a few more
seconds. The reason this is difficult is because sometimes
the reading changes very quickly while the digital meter
displays the current at discrete intervals. It was therefore
difficult to be certain that the readings were taken at the
right time. In order to get accurate readings, we would
need a method of reading the first current displayed, be-
fore it changes, such as a graphical meter that plotted the
current. In order to minimize this random error we always
had the same person reading the current although this con-
tributed towards more systematic error. Another source of
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systematic error was the equipment we used. We had to
assume the values given were absolute since no error was
given. It is also possible that the galvanometer or the Hi-
bbert flux standard were not calibrated. Since they are
quite old, the galvanometer may not have been producing
accurate deflections. In order to ensure that the equipment
was accurate, we tested the resistance box to ensure it was
130Ω as indicated but we could also have tested the volt-
meter and ammeter. One large source of error would be
the mislabeling of the flux standard. While it was labeled
as S2H which corresponded with a value of 1.72mWb as
our value for Nsϕs. A different value here would have a
significant effect on all of our calculated values.

Due to a fluctuating voltage source, we had to change
our power supply after the first three trials. We do not
know how constant it was during these trials and therefore
this may account for some error in these trials.

6 Conclusion
This experiment measured the magnetization curve of an
iron coil – known as a hysteresis loop – and analyzed its
shape and properties. When a magnetic field is applied
to the coil, it causes it to become magnetized to a satu-
ration point; the polarity of the current is then reversed
twice, magnetizing the iron to saturation in opposite po-
larities each time and thereby completing the loop. The
area of this loop is equal to the work done per unit volume
of the coil, indicating the loss of energy due to molec-
ular magnetic friction. Analysis showed that change in
the work was proportional to change in the voltage with a
coefficient of 9[1] × 10−6JV −1. The fit line of work vs
voltage should pass through zero since no voltage implies
no work; instead our fit had an intercept of 0.00011[1]J .
This was caused by systematic error because the fit line
passed cleanly through the points within the calculated
random error. Possible explanations are additional energy
loss not caused by hysteresis, small equipment miscalibra-
tions, and ambient magnetic fields. Also, the endpoints
of our loops were not cleanly defined – the most proba-
ble significant source of systematic error. We ran the ex-
periment to a certain resistance and assumed that this ac-
complished the magnetic saturation, when in fact our high
readings and crossing loops suggest that perhaps this may
have passed the saturation point. In theory this would not
affect the area, but in practice the lines after the saturation
point do not coincide, leading to a consistently high area.

There are several points where the results from this
experiment could be improved. The galvanometer should
have been read to one tenth of a millimeter every reading.
Equipment could have been calibrated against a known

standard to ensure accuracy. Original values read from
the equipment were taken without error; some of these
values might have been remeasured. Because the error
on the measured deflection was cumulative, accuracy de-
creased with more measurements. On the other hand,
more measurements gave a greater resolution to the curve.
The experiment could be repeated once with a fewer, op-
timal number of points to give the most accurate result,
then again with more, smaller resistance changes to give
a more precise shape of the curve. Combining these two
results would then achieve greater accuracy and precision.

–
This experiment measured the magnetization curve of

an iron coil – known as a hysterisis loop – and analyzed
its shape and properties. When a magnetic field is applied
to the coil, it causes it to become magnetized to a satura-
tion point; the polarity of the current is then reversed and
the coil magnetized to saturation in the opposite polarity.
After being reversed again, the coil returns to saturation in
the original polarity, completing the loop. With voltages
of the order of 10V and a resistance of 130Ω, the loops
showed a magnetic saturation magnitude of the order of
2.5mT at a maximum magnetizing field magnitude of the
order of 4000Am−1. From this information, a Steinmetz
coefficient of 56800± 500 was found for the iron ring.

The area of this loop is equal to the work done per unit
volume of the coil, indicating the loss of energy due to
molecular magnetic friction. Analysis showed that change
in the work was proportional to change in the voltage with
a coefficient of 8.89× 10−6JV −1. We expect that the fit
line of work vs. voltage should pass through zero since
with zero voltage there is no work done; instead our fit had
an intercept of 0.0001J . It is expected that this is caused
by a systematic error because the fit line passed cleanly
through the points within the calculated random error but
was offset by this amount. Due to the small values, this er-
ror could be caused by small equipment miscalibrations or
even ambient magnetic fields. Also, the endpoints of our
loops were not cleanly defined, the most probable signifi-
cant source of systematic error. We ran the experiment to a
certain resistance and assumed that this accomplished the
magnetic saturation, when in fact our high readings and
crossing loops suggest that perhaps this may have passed
the saturation point. In theory this would not affect the
area, but in practice the lines after the saturation point do
not coincide, leading to a consistently high area.

There are several points where the results from this
experiment could be improved. The galvanometre should
have been read to one tenth of a millimetre every reading,
rather than only the first set. Equipment, specifically the
galvanometre, could have been calibrated against a known
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standard to ensure accuracy. Original values read from the
equipment were taken without error; since the equipment
was old, some of these values might have been remea-
sured. Because the error on the measured deflection was
cumulative, accuracy decreased with more measurements.
On the other hand, more measurements gave a greater res-
olution to the curve. The experiment could be repeated
once with a fewer, optimal number of points to give an
accurate result, then again with more, smaller resistance
changes to give the more precise shape of the curve. Com-
bining these two results might achieve more accuracy and
precision to the loop.
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A Sample Calculations
Trial 1 calculations; examples using the first data point – V = 11.89V ; ds = 12.80cm; d1 = 0.2cm; I1 = 0.017A:

kb =
Nsϕs

nAds

kb =
1.72mW

(24)(π0.0064m2)(0.128m)
kb = 27.84693mWm−3

σds = 0.00025m

σkb
= kb ·

(
σds

ds

)
σkb

= 27.84693 ·
(

0.00025
0.1280

)
σkb

= 0.05

kb = 27.85± 0.05mWm−3

dn =
n∑

m=1

dm

σdn =
√

n(σds
)2 = σds

√
n

σd1 = 0.00025m ·
√

1
σd1 = 0.00025m

Bn = kb · dn

B1 = 27.84693mWm−3 × 0.002m

B1 = 0.0557386mT

σBn = Bn

√(
σkb

kb

)2

+
(

σdn

dn

)2

= kbdn

√(
σkb

kb

)2

+ i

(
σdn

dn

)2

σB1 = 27.84693mWm−3 × 0.002m

√(
0.05mWm−3

27.84693mWm−3

)2

+ (1)
(

0.00025m

0.1280m

)2

= 0.0001mT

B1 = 0.0557± 0.001mT
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H =
NI

l

H1 =
2385 · 0.017A

π0.16m

H1 = 80.6617Am−1

σI = 0.001A

σH =
N

l
σI

σH =
2385

π0.16m
· 0.001A

σH = 5Am−1

H1 = 81± 5Am−1

(H is in Ampere-turns per metre.)
Computing the accumulated error on Bn:

σBn =
√

iσ 2
B

σB1 =
√

1 · (0.00025m)2

= 0.00025m

The top and bottom curves of the hysterisis loop were fit
to parametric Catmull-Rom splines. This is similar to con-
necting a line between each point, but instead a continuous
cubic curve is smoothly interpolated between them. For some
parameter s from zero to one used to interpolate p between

two points, pn and pn+1, where pn =
(

Hn

Bn

)
.

Linear interpolation:

p =
(
−1 1
1 0

) (
s
1

)
·
(

pn

pn+1

)
Hermite cubic interpolation that we used:

p =


2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0




s3

s2

s
1

 ·


pn

pn+1

tn
tn+1


where t1 and t2 are the tangents at each point. These are calculated as:

tn =
1
2
(pn+1 − pn−1)

except at the endpoints where pn is replaced for the overflowing value and the result is doubled.
For example, the curve between points 16 and 17 for trial one was parameterized as:
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p16 =


2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0




s3

s2

s
1

 ·



(
3795.845Am−1

2.589765mT

)
(

3103.104Am−1

2.53407mT

)
1
2

(
2434.086Am−1

2.2.45053mT

)
− 1

2

(
4332.009Am−1

2.645459mT

)
=

(
−614.452Am−1

−0.05569mT

)
1
2

(
3795.845Am−1

2.589765mT

)
− 1

2

(
2434.086Am−1

2.45053mT

)
=

(
−680.88Am−1

−0.06962mT

)


To begin calculating the area of between the curves, each segment of the spline is integrated:

An =
∫ 1

0

H ′Bds

=
∫ 1

0

[
d

ds

(
(2s3 − 3s2 + 1)Hn + (−2s3 + 3s2)Hn+1 + (s3 − 2s2 + s)tHn + (s3 − s2)tHn+1

)]
·

(
(2s3 − 3s2 + 1)Bn + (−2s3 + 3s2)Bn+1 + (s3 − 2s2 + s)tBn + (s3 − s2)tBn+1

)
ds

=
1
10

(−HntBn + HntBn+1 + tHnBn − tHnBn+1 + Hn+1tBn −Hn+1tBn+1 − tHn+1Bn + tHn+1Bn+1)+

1
2
(−HnBn −HnBn+1 + Hn+1Bn + Hn+1Bn+1)+

1
60

(tHntBn+1 − tHn+1tBn)

For example, the segment 16 to 17 in trial one had an area of:

A16 =
1
10

(−(3595.845Am−1)(−0.5569mT ) + (3595.845Am−1)(−0.06962mT )

+ (−614.452Am−1)(2.589765mT )− (−614.452Am−1)(2.534071mT )

+ (3103.104Am−1)(−0.5569mT )− (3103.104Am−1)(−0.06962mT )

− (−680.88Am−1)(2.589765mT ) + (−680.88Am−1)(2.534071mT ))+

1
2
(−(3595.845Am−1)(2.589765mT )− (3595.845Am−1)(2.534071mT )

+ (3103.104Am−1)(2.589765mT ) + (3103.104Am−1)(2.534071mT ))+

1
60

((−614.452Am−1)(−0.06962mT )− (−680.88Am−1)(−0.5569mT ))

= −1775.02mTAm−1

Because the endpoints of the curve don’t line up, a line
segment needs to be added to close the loop. This adds an-
other integral to be computed. Note that the signs used in this
calculation make this segment add with the same sign as the
start of the top curve:
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At =
∫ Htop

Hbottom

[
Bbottom +

Btop −Bbottom

Htop −Hbottom
(h−Hbottom)

]
dh

=
1
2
(Htop −Hbottom)(Btop + Bbottom)

For trial one:

At =
1
2

(
(4332.009Am−1)− (4469.608Am−1)

)
((2.645459mT ) + (2.81254mT ))

= −375.5087mTAm−1

This gives a closed curve, but some of our loops were not
simple (it ie they were self-intersecting.) Because we only
consider positive area, the ‘top’ and ‘bottom’ of the curves
must be swapped over intervals where they cross over. This
leaves calculating the area for the interval on which the two
curves intersect. Finding the intersection of two cubics then
integrating between variable parametres turns out to be a very
complicated calculation. Since part of the area on either side
of the intersection will cancel out, the area of these intervals
will be much smaller than that of other intervals. Doing lin-
ear interpolation for this one segment of the spline has no
significant effect on the net result (doing linear interpolation on the entire curve has only a small effect.)

First, the indices of the points a, a′, z = a + 1, and z′ = a′ + 1 on either side of the intersection are determined
by inspection of the curve; next, H of the intersection point, p, is calculated:

Hp =
Ba′ −Ba +

(
Bz−Ba

Hz−Ha

)
Ha −

(
Bz′−Ba′
Hz′−Ha′

)
Ha′(

Bz−Ba

Hz−Ha

)
−

(
Bz′−Ba′
Hz′−Ha′

)
For trial one, a was 18 and a′ was 72:

Hp =
B72 −B18 +

(
B19−B18
H19−H18

)
H18 −

(
B73−B72
H73−H72

)
H72(

B19−B18
H19−H18

)
−

(
B73−B72
H73−H72

)
=

(2.478377mT )− (2.45053mT ) +
(

(2.394836mT )−(2.45053mT )
(2040.267Am−1)−(2434.086Am−1)

)
(2434.086Am−1)−

(
(2.617612mT )−(2.478377mT )

(3112.593Am−1)−(2448.32Am−1)

)
(2448.32Am−1)(

(2.394836mT )−(2.45053mT )
(2040.267Am−1)−(2434.086Am−1)

)
−

(
(2.617612mT )−(2.478377mT )

(3112.593Am−1)−(2448.32Am−1)

)
= 2256.624Am−1

Calculate the integral, swapping signs on either side of point p:

AI =
∫ Hp

Ha

[
Ba +

Bz −Ba

Hz −Ha
(h−Ha)

]
dh−

∫ Hz

Hp

[
Ba +

Bz −Ba

Hz −Ha
(h−Ha)

]
dh−

∫ Hp

Ha′

[
Ba +

Bz −Ba

Hz −Ha
(h−Ha)

]
dh +

∫ Hz′

Hp

[
Ba +

Bz −Ba

Hz −Ha
(h−Ha)

]
dh

=
1
2
(Ba′Hz′ + Bz′Hz′ + BaHz + BzHz −BaHa −BzHa −Ba′Ha′ −Bz′Ha′)

For trial one:
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AI =
1
2
((2.478377mT )(3112.593Am−1) + (2.617612mT )(3112.593Am−1) + (2.45053mT )(2040.267Am−1) + (2.394836mT )(2040.267Am−1)− (2.45053mT )(2434.086Am−1)− (2.394836mT )(2434.086Am−1)− (2.478377mT )(2448.32Am−1)− (2.617612mT )(2448.32Am−1))

= 22.99033mTAm−1

Note that integrals along the top curve give negative results because we are integrating from a higher H to a lower
H . With this in mind, the final area function is given by summing the integrals under each segment and the closing
segment. If the curve intersects, the two integrals Aa and A′

a are replaced by the area for the intersecting segment, AI :

©
∫∫

loop

DH ·DB =

{
−

∑end
i=1 Ai −At, simple∑a−1

i=1 Ai

∑a′−1
i=a+1 Ai

∑end
i=d+1 Ai + AI + At, intersecting

Since trial one was intersecting, its area was:

©
∫∫

loop

DH ·DB = (−1403.27mTAm−1 − 1775.02mTAm−1 − 1667.97mTAm−1)− (−864.89mTAm−1 + . . . + 839.90mTAm−1) + (1693.71mTAm−1 + 2030.30mTAm−1 + 1656.57mTAm−1) + (22.99033mTAm−1) + (−375.5087mTAm−1)

= 4257.42mTAm−1

The error on the area is calculated by first finding the er-
rors on each term of the area sum. Using the method of par-
tial derivatives on these formulae directly yields error equa-
tions several scores of printed pages in length for each term.
Because this is an error calculation, approximations are def-
initely appropriate. For finding the error on the integral be-
tween each point, we use the following approximation:

An

∫ Hn+1

Hn

hBndh = Bn(Hn+1 −Hn)

This gives the following error calculation (the error on H
is constant for each trial):

σAn =

√(
σBn

A

Bn

)2

+
(

σH
A

Hn

)2

+
(

σH
A

Hn+1

)2

=
√

2σ 2
H σBn 2 + σ 2

Bn (Hn+1 −Hn)2

In trial one, for example, one such error was:

σA16 =
√

2(4.744807Am−1)2(0.028303mT )2 + (0.028303mT )2 ((3103.104Am−1)− (3795.845Am−1))2

= 26.19918mTAm−1

The total error on the area is computed by taking the error on the sum of the integrals of each segment. Error on
the closing and intersecting segments is ignored because they make up a very small portion of the total area (which is
compensated for by including error on the segments they would have replaced.) The final approximation is well within
5% of the error that would have been obtained without taking any approximations:
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σA =
√∑

σ2
An

For trial one this was:

σA =
√

(23.06029Am−1)2 + . . . + (40.34052Am−1)2

165.2311mTAm−1

Work Calculations - volume:

V = 2π2R2r = (cross-sectional area · circumference)

= (1× 10−4m2) · (0.16mπ)

= 5.02655× 10−5m3

Work (where V is volume):

W = V · area of hysterisis loop

= (5.02655× 10−5m3)(4.25742AWbm−1)

= 2.14× 10−4J

Error on work:

σW = W ·
√(σarea

area

)2

+
(σV

V

)2

= 2.14× 10−4J ·

√(
0.165231AWbm−1

4.25742AWbm−1

)2

+
(

0m3

5.02655× 10−5m3

)2

= 8× 10−6J

Steinmetz constant for each trial:

ηn =
area

Bmax1.6

η1 =
4.25742AWbm−1

(0.002645T )1.6

= 56642.824

Individual error on Steinmetz constant:

σηn = ηn ·

√(σarea
area

)2

+
(

σBmax
Bmax

)2

ση1 = 56642.824 ·

√(
0.165231AWbm−1

4.25742AWbm−1

)2

+
(

2.74533× 10−5T

0.0026455T

)2

= 2275.54783
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Error of Steinmetz constant:

ση =

√∑ 1
σ2

ηn

=

√
1

(2275.547)2
+ . . . +

1
(1835.748)2

= 535.665

Weighted average of Steinmetz constant:

η = ση2
η

∑ ηn

σ2
ηn

= (535.66)2 ·
(

(56642.824)
(2275.547)2

+ . . . +
(58982.244)
(1835.748)2

)
= 56783.740
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