198-257A, Lab Three: Kater's Pendulum

Chris Payette, Neil Edelman

2002-09-27

1 Data and Results

See Table 1 and Table 2.

The value obtained for g is $9.7920[8]ms^{-2}$, with a percentage error of 0.15% from the accepted value.

2 Conclusion

2.1 Chris Payette

(Ed: I do'n't have Chris'.)

2.2 Neil Edelman

A high-precision pendulum setup was used to measure g with a value of $9.7920[8]ms^{-2}$. Although this value is within 0.15% of the accepted value of $9.806431ms^{-2}$, it does not fall within the calculated accuracy of the experimental value. At the approximately six degree angle of oscillation used, the systematic error introduced by the use of a small angle approximation (around 0.05%) is about one third of the difference between the two values. Another significant source of systematic error was the assumption that T_1 and T_2 were precisely equal. The measured averages were within 0.001% of each other, but – comparing the difference with the error on the averages using only ten trials – there is about a 10% uncertainty on this 0.001% difference.

knife to knife, $h_1 + h_2$ (±0.01mm)	966.02	
$h_1(\pm 2mm)$	308	(never used)
$h_2(\pm 2mm)$	658	(never used)

Table 1: Our equipment.

knife to small mass ($\pm 0.01mm$)	trial	$4T_1(\pm 0.001s)$	$4T_2(\pm 0.001s)$
7.20	1	7.892	7.897
	2	7.892	7.896
	3	7.891	7.896
	average T ($\pm 0.00014s$)	1.97292	1.97408
5.00	1	7.904	7.914
	2	7.905	7.915
	3	7.905	7.914
	average T ($\pm 0.00014s$)	1.97617	1.97858
9.00	1	7.891	7.882
	2	7.891	7.882
	3	7.891	7.882
	average T ($\pm 0.00014s$)	1.97275	1.97050
6.00	1	7.900	7.908
	2	7.900	7.908
	3	7.900	7.908
	average T ($\pm 0.00014s$)	1.97500	1.97700
8.00	1	7.893	7.890
	2	7.894	7.889
	3	7.893	7.890
	average T ($\pm 0.00014s$)	1.97333	1.97242
7.35	1	7.894	7.894
	2	7.894	7.893
	3	7.894	7.893
	average T ($\pm 0.00014s$)	1.97350	1.97333
7.30	1	7.894	7.896
	2	7.895	7.896
	3	7.895	7.895
	average T ($\pm 0.00014s$)	1.97367	1.97392
7.33	1	7.894	7.894
	2	7.894	7.894
	3	7.894	7.894
	4	7.894	7.894
	5	7.894	7.893
	6	7.894	7.895
	7	7.894	7.895
	8	7.895	7.894
	9	7.894	7.894
	10	7.894	7.895
	average T ($\pm 0.00008s$)	1.97353	1.97355

Table 2: Note: the two average values for T are close enough relative to their error that we will consider them to be equal at their average, 1.9354s.

A Sample Calculations and Error Analysis

A.1 Calculating the average period for a trial

$$\bar{T} = \frac{1}{N} \sum_{n=1}^{N} N \frac{4T_n}{4}$$
$$= \frac{1}{3} \left(\frac{7.892s}{4} + \frac{7.892s}{4} + \frac{7.891s}{4} \right)$$
$$= 1.9729s$$

where the error on this value is:

$$\sigma_{\bar{T}} = \frac{1}{4} \sqrt{\frac{1}{\sum_{n=1}^{N} \frac{1}{\sigma_{T_n}^2}}}$$
$$= \frac{1}{4} \sqrt{\frac{1}{\left(\frac{3}{(0.001s)^2}\right)}}$$
$$= 0.00014s$$

calculating g:

$$g = \frac{4\pi^2(h_1 + h_2)}{T^2}$$
$$g = \frac{4\pi^2(966.02mm)}{(1.9735s)^2}$$
$$g = 9792.004mms^{-2}$$

where the error on this value is:

$$\begin{aligned} \sigma_g &= \sqrt{\left(\left(\frac{\partial g}{\partial (h_1 + h_2)} \right)^2 \Big|_{h_1 + h_2} \sigma_{h_1 + h_2}^2 \right) + \left(\left(\frac{\partial g}{\partial T} \right)^2 \Big|_{\bar{T}} \sigma_T^2 \right)} \\ &= \sqrt{\left(\left(\frac{4\pi^2}{(1.9735s)^2} \right)^2 (0.01mm)^2 \right) + \left(\left(\frac{-8\pi^2 (966.02mm)}{(1.9735s)^3} \right)^2 (0.0008mm)^2 \right)} \\ &= 0.8002mms^{-2} \end{aligned}$$

percentage difference:

$$p = \frac{|g_{acc} - g_{exp}|}{\frac{1}{2}(g_{acc} + g_{exp})} \cdot 100\%$$

=
$$\frac{|(9.806431ms^{-2}) - (9.7920ms^{-2})|}{\frac{1}{2}((9.806431ms^{-2}) + (9.7920ms^{-2})))} \cdot 100\%$$

= 0.15\%