198-257A, Lab Two: Some Kind of Lens Thing

Chris Payette, Neil Edelman

2002-09-20

1 Data

1.1 Part 1

See Table 1.

1.2 Part 2

See Table 2 and Figure 1.

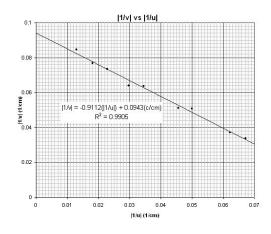


Figure 1: $\left|\frac{1}{v}\right| vs \left|\frac{1}{u}\right|$

1.3 Part 3

See Table 3.

2 Conclusion

2.1 Chris Payette

(Ed: I do'n't have Chris'.)

2.2 Neil Edelman

The thin-lens formula, $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$, was used to measure the focal lengths of three lenses using three different methods, checked against the manufacturer's values $(f_O = 50cm; f_B = 10cm; f_C = -10cm)$ Part 1 used a focusing method with a single trial, estimating measurement errors, to find $f_O = (50.4[3])cm$ and $f_B = 10.6[3]cm$. Part two used a parallax method with a series of nine different trials to find $f_B = 10.17[16]cm$. Part three used the average of three measurements with the parallax of a distant object to find f_C to be -10.0[1]cm.

f marked on lens (cm)	$x_{screen} \ (\pm 0.1 cm)$	$x_{lens} \ (\pm 0.3 cm)$	f (±.3 cm)
50	90	39.6	50.4
10	90	79.4	10.6

f marked $10cm$						
trial	$x_{object} \ (\pm 0.1 cm)$	$x_{lens} \ (\pm 0.1 cm)$	$x_{image} \ (\pm 0.6 cm)$	u (±0.1 cm)	v ($\pm 0.6cm$)	f ($\pm 1cm$)
1	96.2	67.3	51.6	-28.9	15.7	10.17331839
2	96.2	62.6	47	-33.6	15.6	10.65365854
3	96.2	74.3	54.7	-21.9	19.6	10.34313253
4	96.2	52.5	38.9	-43.7	13.6	10.37207679
5	96.2	41	28	-55.2	13	10.52199413
6	96.2	80.1	53.2	-16.1	26.9	10.07186047
7	99.4	22	10.2	-77.4	11.8	10.23901345
8	50.1	30.1	10.4	-20	19.7	9.924433249
9	54.9	40	10.4	-14.9	29.6	9.911011236

Table 2: Results from Part 2

f marked $-10cm$ trial	r_{1} (cm)	r. (cm)	v (cm)
1	$\frac{x_{lens} (cm)}{3}$	$\frac{x_{image} (cm)}{13.1}$	-10.1
2	33.9	43.8	-9.9
3	49	58.9	-9.9
average			-9.966666667

Table 3: Results from Part 3

A Sample Calculations and Error Analysis

A.1 Part 1

Finding f from x_{screen} and x_{lens} :

$$f = x_{screen} - x_{lens}$$

$$f_{50} = 90.0[1]cm - 39.6[3]cm$$

$$= 50.4[3]cm$$

where the error on this value was:

$$\sigma_{f50} = \sqrt{\sigma x s 50^2 + \sigma x l 50^2}$$

= $\sqrt{(0.1 cm)^2 + (0.3 cm)^2}$
= 0.316cm

A.2 Part 2

Finding u from x_{object} and x_{lens} :

$$u = x_{lens} - x_{screen}$$

$$u_1 = 67.3[1]cm - 96.2[1]cm$$

$$= -28.9[1]cm$$

where the error on this value was:

$$\sigma_{u1} = \sqrt{\sigma x l l^2 + \sigma x o l^2} = \sqrt{(0.1 cm)^2 + (0.1 cm)^2} = 0.141 cm$$

finding v from x_{image} and x_{lens} :

$$v = x_{lens} - x_{screen}$$

 $v_1 = 67.3[1]cm - 51.6[6]cm$
 $= 15.7[6]cm$

where the error on this value was:

$$\sigma_{v1} = \sqrt{\sigma x l 1^2 + \sigma x i 1^2} = \sqrt{(0.1 cm)^2 + (0.6 cm)^2} = 0.608 cm$$

finding f from u and v:

$$f_1 = \frac{1}{\frac{1}{v_1} - \frac{1}{u_1}}$$
$$= \frac{1}{\frac{1}{\frac{1}{15.7[6]cm} - \frac{1}{-28.9[1]cm}}}$$
$$= 10.2[3]cm$$

where the error on this value was:

$$\sigma_{f1} = \frac{10.173cm}{0.0983cm^{-1}} \sqrt{\left(\frac{1}{15.7cm} \frac{0.6cm}{15.7cm}\right)^2 + \left(\frac{1}{28.9cm} \frac{0.1cm}{28.9cm}\right)^2} = 0.2522cm$$

(Ed: The page said there's an error.)

A.3 Part 3

(Ed: I do'n't know where this went.)

A.4 Finding *f* from part 2

$$\sigma_T^2 = \frac{1}{\sum_{i=1}^M \frac{1}{\sigma_i^2}}$$
$$f_T = \sigma_T^2 \sum_{i=1}^M \frac{1}{\sigma_i^2}$$