

ECSE427/COMP310 Page 1 of 5

Programming Assignment #5: Simple File System
Due date: Check My Courses`

1. What is required as part of this assignment?
As part of this assignment, you are expected to design and implement a simple file system (SFS). The

simple file system handles a single application at any given time, it implements no user concept, does not
support protection among files. Although these assumptions are quite dramatic, it leaves the file system
still usable in single-tasking environments such as digital cameras and other “embedded” environments.
Also, you will implement a simplified interface to the file system with notable restrictions such as: limited
length filenames, limited length file extensions, no subdirectories (i.e., only a single “root” directory), few
file attributes such as size, creation or last modified date, and no file permissions. Your user interface is in
the form of a library of functions – that is you are not required to provide any graphical user interface.
Another user wanting to use your file system needs to write a program that uses your library of functions
and interface with an instance of your file system. A library of C functions will emulate the disk system.
This library is provided to you.

2. Objectives in detail
Your SFS should implement the following application programming interface (API). The C language

based API should look like the following. If you modify this API, your API should be a superset of the
given API (i.e., should provide more functionality).

void	
 mksfs(int	
 fresh);	
 	
 //	
 creates	
 the	
 file	
 system	

void	
 sfs_ls();	
 	
 	
 	
 //	
 lists	
 files	
 in	
 the	
 root	
 directory	

int	
 sfs_fopen(char	
 *name);	
 	
 //	
 opens	
 the	
 given	
 file	

void	
 sfs_fclose(int	
 fileID);	
 	
 //	
 closes	
 the	
 given	
 file	

void	
 sfs_fwrite(int	
 fileID,	
 	

	
 char	
 *buf,	
 int	
 length);	
 //	
 write	
 buf	
 characters	
 into	
 disk	

void	
 sfs_fread(int	
 fileID,	

	
 char	
 *buf,	
 int	
 length);	
 //	
 read	
 characters	
 from	
 disk	
 into	
 buf	

void	
 sfs_fseek(int	
 fileID,	

	
 int	
 loc);	
 	
 	
 	
 //	
 seek	
 to	
 the	
 location	
 from	
 beginning	

int	
 sfs_remove(char	
 *file);	
 //	
 removes	
 a	
 file	
 from	
 the	
 filesystem	

	

Try to make your file system as simple as possible. You need not implement support for hierarchy of
directories. All the files will be in a single root directory. The mksfs() - will format the virtual disk for
your own file system, i.e., create necessary disk resident data structures and initialize them. The mksfs()
has a fresh flag to signal that the file system should be created from scratch. If flag is false, the file system
is opened from the disk (i.e., we assume that a valid file system is already there in the filesystem. This
persistence is IMPORTANT so you reuse existing data or create a new file sytem. The sfs_ls() - will list
the contents of the directory in details, i.e., including the information stored in the file control blocks. The
sfs_fopen() - opens a file and returns the index on the file descriptor table. If file does not exist, create
the new file and set size to 0. If file exists, open the file in append mode (i.e., set the file pointer to the end
of the file). The sfs_fclose() - closes a file, i.e., removes the entry from the open file descriptor table.
The sfs_fwrite() - writes length bytes of buffered data in buf onto the open file, starting from the current
file pointer. This in effect increases the size of the file by “length” bytes. The sfs_remove() - will remove
the file from the directory entry as well as release the file allocation table entries and data blocks used by
the file, so that they can be used by new files in future.

ECSE427/COMP310 Page 2 of 5

A file system is somewhat different from other components because it maintains data structures in
memory as well as disk! The disk data structures are important to manage the space in disk and allocate
and de-allocate the disk space in an intelligent manner. Also, the disk data structures indicate where a file
is allocated. This information is necessary to access the file.

3. Implementation strategy
The disk emulator given to you provides a constant-cost disk (CCdisk). This CCdisk can be

considered as an array of sectors (blocks of fixed size). You can randomly access any given sector for
reading or writing. The CCdisk is implemented as a file on the actual file system. Therefore, the data you
store in the CCdisk is persistent across program invocations. Let your CCdisk have N disk sectors with
each sector having a size of M bytes. The disk space should be used to allocate disk data structures of the
file system as well the files.

On disk data structures of the file system include a “super” block, the root directory, free sector list,
file allocation table. The very first block is always the super block. This block will hold the number of
blocks for the root directory (only one level directory here), number of blocks for the FAT, and the
number of data blocks, and number of free blocks. You could make some simplifying assumptions. For
example, the free block list can be contained within a single block. This will limit the maximum partition
size in terms of the number of blocks. However, the root directory and FAT should not be limited to a
single block. You can pre-allocate the space for these structures and store that value in the super block. So
the space allocated for the root directory and FAT are fixed once the file system is created.

Files are identified by human readable “file names.” These are strings formed by the user that
conform to the file system conventions. You can make up reasonable conventions for the SFS regarding
names. A directory is a table that maps these names to data block locations. The file allocation table
(FAT) gives the data block locations. Therefore, the directory entry need not specify all the data block
locations for a particular file. Instead, it just points to the FAT table entry that corresponds to the “head”
of the chain of data block mappings for a file. Each FAT entry specifies the location of a single data
block. This means a file needs multiple FAT entries to completely specify its mapping on the disk. To
implement this requirement, the FAT entries can be organized in a chain (i.e., linked list). It is important
to realize that the FAT table is implemented in disk NOT memory. Therefore, ordinary C pointers cannot
be used to implement the list in FAT. Instead you should use FAT indexes.

Figure 1 shows an example set of on disk data structures for implementing the SFS. The figure shows
the allocation for an example file Test.exe. In this case, the first FAT entry for Test.exe is 3. It points to
data block 92, which holds the first portion of Test.exe. Suppose a data block is 1000 bytes. Bytes 0 to
999 of Test.exe will be found in data block 92. The last data block (data block 12) may not be fully
populated with Test.exe’s data. This can be determined using the size attribute. The contents of Test.exe
are held in blocks 92, 96, 43, and 12 (in that order).

ECSE427/COMP310 Page 3 of 5

root
directory FAT Free

block list
-- data blocks --

Equal sized blocks. Number of blocks fixed and equals the capacity of the disk.

Root directory block

File name Attribs. FAT indx.

Test.exe -- 3

File allocation table

DB indx. next

3

7

15

26

92 26

96 7

15

EOF

43

12

Figure 1: On-disk data structures of the file system.

In addition to the on-disk data structures, we need a set of in-memory data structures to implement
the file system. The in-memory data structures improve the performance of the file system by caching the
on disk information in memory. Two data structures should be used in this assignment: directory table and
file descriptor table(s). The directory table keeps a copy of the directory block in memory. When you
want to create, delete, read, or write a file, first operation is to find the appropriate directory entry.
Therefore, directory table is a highly accessed data structure and is a good candidate to keep in memory.
Another data structure to cache in the memory is the free block list. See the class notes for different
implementation strategies for the free block list.

Figure 2 shows an example set of in-memory data structures. The open file descriptor table(s) can be
implemented in two different ways. You can have a process specific one and a system-wide one. This is
more general and closely follows the UNIX implementation. You can simplify the situation and have only
the table – this is reasonable because we assume that only process is accessing a file at any given time
(i.e., no simultaneous access to a single file by multiple processes).

As shown in Figure 2, the entry in the file descriptor table can be used to provide some information
regarding the reading and writing locations. The mandatory information is the FAT root for the file. For
example in the previous example the FAT root is 3 for Test.exe. When a file is written to, the write
pointer moves by the amount of bytes that is written onto the file. Normally, the write pointer would
always point towards the end of the file unless it is explicitly manipulated to point elsewhere (for
example, using a seek() routine in C/UNIX). The sfs_fseek()function modifies the read and write pointers.
In SFS, both pointers are set my a single invocation of the sfs_fseek()function. Subsequent
sfs_fread()calls and sfs_fwrite()calls change the read and write pointers independently. You should think
of how to implement the read and write pointers. Please note you are required to write data in arbitrary
length chunks onto the file. In addition to these data structures, we can have caching structures for FAT
and directory blocks.

ECSE427/COMP310 Page 4 of 5

open (filename)

User space Kernel space Disk storage

Per-process
file descriptor table

System-wide
file descriptor table

Root FAT Write ptr. Read ptr.

Possible structure for a file descriptor table entry
Figure 2: In-memory data structures for the file system.

Following are some of the main operations supported by the filesystem: creating a file, growing a
file, shrinking a file, removing a file, and directory modifications.

To create file:

1. Allocate and initialize an FAT node.
2. Write the mapping between the FAT node and file name in the root directory.

3. Write this information to disk.
4. No disk data block allocated. File size is set to 0.

5. This can also “open” the file for transactions (read and write). Note that the SFS API does not
have a separate create() call. So you can do this activity as part of the open() call.

To grow a file:

1. Allocate disk blocks (mark them as allocated in your free block list).
2. Modify the file's FAT node to point to these blocks.

3. Write the data the user gives to these blocks.
4. Flush all modifications to disk.

5. Note that all writes to disk are at block sizes. If you are writing few bytes into a file, this might
actually end up writing a block to next. So if you are writing to an existing file, it is important you read
the last block and set the write pointer to the end of file. The bytes you want to write goes to the end of
the previous bytes that are already part of the file. After you have written the bytes, you flush the block to
the disk.

To shrink a file:
1. Remove pointers to the disk blocks from the FAT node of the file.

ECSE427/COMP310 Page 5 of 5

2. Mark the disk blocks as free.

To seek on a file:
1. Modify the read and write pointers in memory. There is nothing to be done on disk!

To read from a file:

2. Remove pointers to the disk blocks from the FAT node of the file.
3. Mark the disk blocks as free.

4. What to Hand In

Make sure your source code could compile in Linux. Test them on the Trottier lab machines. Submit the
following files in a single archive file (tar.gz, zip, rar):

1. A README file with your name and McGill ID number and other relevant information for the
TA.

2. If you have not fully implemented all, then list the parts that work so that you can be sure to
receive credit for the parts you do have working. Indicate any issues you ran into doing this assignment. If
you point out an error that you know occurs in your problem, it may lead the TA to give you more partial
credit.

2. All source files needed to compile, run and test your code. If multiple source files are present,
provide a Makefile for compiling them. Do not submit object or executable files.

3. Output from your testing of your program.

