
Programming	
 Assignment	
 #1:	
 MyThreads	

Package	
 (a	
 User	
 Level	
 Threads	
 Package)	
 	

Due:	
 see	
 My	
 Courses	
 for	
 the	
 deadline	

What	
 is	
 required	
 as	
 part	
 of	
 this	
 assignment?	

In this assignment, you will develop a user-level threads package. This provides a simplified
replacement for Pthreads that you were using in the previous assignment. You develop
Mythreads library which provides a preemptive multi-threading on Linux. Because it is built as a
user library without any kernel support, it does not handle system calls properly (more on this
later).
You will implement the thread package completely in C (i.e., no assembly code is necessary)1. It
is important for you to recall that a thread is an independent execution of a program code. The
multiple independent runs of the program share the resources that belong to the parent process.
To enable an independent run we need to provide a stack to each executing instance. Because
multiple instances can share the same processor, we need to enable the multiple executing
instances to multiplex on the processor. To enable multiplexing, we need to save and restore the
executing context. This way the processor can be executing one instance and then switch over to
another instance by saving the current executing context and restoring the next one. Fortunately,
Linux provides system libraries for manipulating user thread contexts. In Linux, a user-thread
context holds saved registers, thread execution stack, and blocked signals. See the man page for
ucontext for more details. As part the ucontext, following functions are provided:

	

int	
 getcontext(ucontext_t	
 *);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 setcontext(const	
 ucontext_t	
 *);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 void	
 makecontext(ucontext_t	
 *,	
 void	
 (*)(void),	
 int,	
 ...);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 swapcontext(ucontext_t	
 *,	
 const	
 ucontext_t	
 *);	

Your thread package should provide the following or equivalent functions.
int	
 mythread_init();
This function initializes all the global data structures for the thread system. Mythreads package
will maintain many global data structures such as the runqueue, a table for thread control blocks.
It is your responsibility to define the actual data structures. One of the constraints you have the
need to accommodate ucontext_t inside the data structures.
	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 You	
 cannot	
 use	
 Pthreads	
 or	
 equivalent	
 Linux/UNIX	
 thread	
 packages	
 in	
 implementing	
 the	

MyThreads	
 package.	
 	

int	
 mythread_create(char	
 *threadname,	
 void	
 (*threadfunc)(),	
 int	
 stacksize);	

This function creates a new thread. It returns an integer that points to the thread control block
that is allocated to the newly created thread in the thread control block table. If the library is
unable to create the new thread, it returns -1 and prints out an error message. This function is
responsible for allocating the stack and setting up the user context appropriately. The newly
created thread starts running the threadfunc function when it starts. The threadname is stored
in the thread control block and is printed for information purposes. A newly created thread is in
the RUNNABLE state when it is inserted into the system. Depending on your system design, the
newly created thread might be included in the runqueue.
void	
 mythread_exit();	

This function is called at the end of the function that was invoked by the thread. This function
will remove the thread from the runqueue (i.e., the thread does not need to run any more).
However, the entry in the thread control block table could be still left in there. However, the state
of the thread control block entry should be set to an EXIT state.
void	
 runthreads();	

In MyThreads, threads are created by the mythread_create() function. The
mythread_create() function needs to be executed by the main thread (the default thread of
process – the one running before MyThreads created any threads). Even after all threads are
created, the main thread will still keep running. To actually run the threads, you need to run the
runthreads(). The runthreads() switches control from the main thread to one of the threads
in the runqueue.
In addition to switching over to the threads in the runqueue, the runthreads() function
activates the thread switcher. The thread switcher is an interval timer that triggers context
switches every quantum nanoseconds.
void	
 set_quantum_size(int	
 quantum);	

Sets the quantum size of the round robin scheduler. The round robin scheduler is pretty simple it
just picks the next thread from the runqueue and appends the current to the end of the runqueue.
Then it switches over to the new thread.
int	
 create_semaphore(int	
 value);	

This function creates a semaphore and sets its initial value to the given parameter. The
mythread_init() function would have initialized the semaphores table and set the total number
of active semaphore count to zero. You insert an entry into this table. Each entry of this table will
be a structure that defines the complete state of the semaphore. It should also have a queue to
hold the threads that will be waiting on the semaphore.
void	
 semaphore_wait(int	
 semaphore);	

When a thread calls this function, the value of the semaphore is decremented. If the value goes
below 0, the thread is put into a WAIT state. That means calling thread is taken out of the
runqueue if the value of the semaphore goes below 0. Here is a pseudo-code for the
implementation of the semaphore. It should be noted that this pseudo-code is missing important
details such as disabling signals (think of the signals as software interrupts).
 void	
 semaphore_wait(semaphore_t	
 *s)	
 {	

	
 	
 s-­‐>count-­‐-­‐;	

if	
 (s-­‐>count	
 <	
 0)	
 {	

enqueue(s-­‐>queue,	
 CurrentThread);	

thread_switch();	

}	

	
 }	

	

	
 void	
 semaphore_signal(semaphore_t	
 *s)	
 {	

	
 	
 s-­‐>count++;	

	
 	
 if	
 (s-­‐>count	
 <=	
 0)	
 	

	
 	
 	
 enqueue(runqueue,	
 dequeue(s-­‐>queue));	

	
 }	

MyThreads has preemptive multithreading, which is implemented through signal based
interrupts. You need to block the signals (more on the exact signal to block later) while
manipulating the semaphore internal parameters. Remember to enable the signal based interrupts
as soon as possible. Otherwise, the multithreading process will stop working!
Notice that the semaphore is denoted by an integer. It is actually an index into the active
semaphore table maintained by the MyThreads library. The semaphore_wait() function needs
to access the record corresponding to the given semaphore and then manipulate its contents.
void	
 semaphore_signal(int	
 semaphore);	

When a thread calls this function, the value of the semaphore is incremented. If value is not
greater than 0, then we should have at least one thread waiting on it. The thread at the top of the
wait queue associated with the semaphore is dequeued from the wait queue and enqueued in the
runqueue. The state of the thread is changed to RUNNABLE. Check the pseudo-code given
above for guidance.
void	
 destroy_semaphore(int	
 semaphore);	

This function removes a semaphore from the system. A call to this function while threads are
waiting on the semaphore should fail. That is the removal process should fail with an appropriate
error message. If there are no threads waiting, this function will proceed with the removal after
checking whether the current value is the same as the initial value of the semaphore. If the values
are different, then a warning message is printed before the semaphore is destroyed.
void	
 mythread_state();	

This function prints the state of all threads that are maintained by the library at any given time.
For each thread, it prints the following information in a tabular form: thread name, thread state
(print as a string RUNNING, BLOCKED, EXIT, etc), and amount of time run on CPU.

Proposed	
 approach	

Designing and implementing appropriate data structures is an important part of the assignment.
You need to start with the thread control block table. Each entry in this table will look something
like the following (intentionally incomplete):
typedef	
 struct	
 _mythread_control_block	
 {	

ucontext_t	
 context;	

char	
 thread_name[THREAD_NAME_LEN];	

int	
 thread_id;	

….	

}	
 mythread_control_block;	

The table itself needs to be directly addressable and can have an upper limit. So this naturally
lends to an array type structure. The thread ID is an index into this table.

In addition to the thread control block table, you will have many queues: runqueue and wait
queues associated with the semaphores. To implement these queues, you can use the libslack
library (www.libslack.org). It is already installed in the CS lab machines. You can install it in
your machine from the project’s website. Below is a simple program that illustrates enqueuing
and dequeuing integers in libslack provided lists (equivalent to queues). I suggest that you use
integers in the runqueue and wait queues to point to the thread structures. This simplifies the
programming effort (particularly the memory management).

#include	
 <slack/std.h>	

#include	
 <slack/list.h>	

	

void	
 main()	

{	

List	
 *l	
 =	
 list_create(NULL);	

	
 	
 int	
 i	
 =	
 100;	

	
 	
 	
 int	
 j	
 =	
 200;	

	
 	
 	
 int	
 k	
 =	
 300;	

	
 //	
 Append	
 integers	
 (enqueue	
 operations)	

	
 	
 	
 l	
 =	
 list_append_int(l,	
 i);	

	
 	
 	
 l	
 =	
 list_append_int(l,	
 j);	

	
 	
 	
 l	
 =	
 list_append_int(l,	
 k);	

	

	
 //	
 Dequeue	
 integers	

	
 	
 int	
 q	
 =	
 list_shift_int(l);	

	
 	
 	
 printf("Value	
 of	
 q	
 =	
 %d\n",	
 q);	

}	

	

Suppose the above program is stored in ltest.c use the following command line to compile it.

gcc	
 –o	
 ltest	
 ltest.c	
 -­‐DHAVE_PTHREAD_RWLOCK=1	
 -­‐lslack	
 	

The libslack library provides support for many more data types. You can check their
documentation for the full set of data types provided by the library and the associated API for
creating and manipulating them.

Getting the user context management done is the important part of this assignment. The user
context APIs provided by Linux greatly simplifies this part of the assignment. The makecontext
man page in Linux provides an example program that shows how the user context management
functions can be used to get the context, manipulate the context by setting the starting function,
and swapping the context. Below is a portion of the program in the makecontext man page.

if	
 (getcontext(&uctx_func1)	
 ==	
 -­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 handle_error("getcontext");	

	
 	
 	
 	
 	
 	
 uctx_func1.uc_stack.ss_sp	
 =	
 func1_stack;	

	
 	
 	
 	
 	
 	
 uctx_func1.uc_stack.ss_size	
 =	
 sizeof(func1_stack);	

	
 	
 	
 	
 	
 	
 uctx_func1.uc_link	
 =	
 &uctx_main;	

	
 	
 	
 	
 	
 	
 makecontext(&uctx_func1,	
 func1,	
 0);	

	

The program fragment above shows how getcontext and makecontext can be used to create a
thread. In the program fragment a thread is created to run func1 and the stack is set from memory
that is allocated by the user. It should be observed that the setup also specifies the context that
should be switched to once the function exits. You can use this information to determine how
your system should behave when the thread completes. The program fragment below shows how
swap the context from one thread to another.
	

	
 	
 	
 	
 	
 	
 	
 printf("main:	
 swapcontext(&uctx_main,	
 &uctx_func2)\n");	

	
 	
 	
 	
 	
 	
 	
 if	
 (swapcontext(&uctx_main,	
 &uctx_func2)	
 ==	
 -­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 handle_error("swapcontext");	

For more information and full listing of the sample program, see the man page for makecontext.
A web copy of the man page can be found at http://linux.die.net/man/3/makecontext.

To drive the preemption process, you need a timer. You can use the setitimer() function for
this purpose. It sends an SIGALRM. You can invoke a given function at each SIGALRM using a
code fragment like the following:

	
 	
 struct	
 itimerval	
 tval;	

	

	
 	
 sigset(SIGALRM,	
 handler);	

	

	
 	
 tval.it_interval.tv_sec	
 =	
 0;	

	
 	
 tval.it_interval.tv_usec	
 =	
 100;	

	
 	
 tval.it_value.tv_sec	
 =	
 0;	

	
 	
 tval.it_value.tv_usec	
 =	
 100;	

	
 	
 setitimer(ITIMER_REAL,	
 &tval,	
 0);	

This code fragment calls the handler every 100 microseconds (note that is wall clock time and
not CPU time). This is not the recommended strategy by Linux. You should use sigaction()
instead of sigset() to make your code portable. For the assignment, sigset() is acceptable and it
works!

The last piece of the puzzle is signal blocking. You need this for implementing the semaphores.
To block a particular signal lets say SIGALRM, you need to use something like the following.

sigset_t	
 sset,	
 oldset;	

sigemptyset(&sset);	

sigaddset(&sset,	
 SIGALRM);	
 	
 //	
 initialize	
 set	
 to	
 contain	
 SIGALRM	

	

…	

//	
 block	
 any	
 occurrence	
 of	
 the	
 SIGALRM	
 (already	
 in	
 sset)	

sigprocmask(SIG_BLOCK,	
 &sset,	
 &oldset);	

	

…	

//	
 unblock	
 SIGALRM	
 so	
 we	
 will	
 receive	
 it	

sigprocmask(SIG_SETMASK,	
 &oldset,	
 0);	

Remember you need to unblock the soonest to get multi-threading going with minimal
interruption.

What	
 to	
 Hand	
 in	

Submit the following files separately:
1. A README file with:

1. Your name and McGill ID number
2. If you have not fully implemented all, then list the parts that work so that you can

be sure to receive credit for the parts you do have working. Indicate any issues
you ran into doing this assignment. If you point out an error that you know occurs
in your problem, it may lead the TA to give you more partial credit.

2. All source files needed to compile, run and test your code. If multiple source files are
present, provide a Makefile for compiling them. Do not submit object or executable files.

3. Output from your testing of your program.

Grading	
 Scheme	
 You	
 Might	
 Want	
 to	
 Know	

1. Make sure your source code could compile in Linux. Test them on the Trottier lab
machines. Programs that do not compile will be evaluated for partial credit. The
maximum marks you can get is 30 points. It is up to the TA to decide how many points to
give based on your code.

2. A README (text file) must come with the assignment to document missing
requirements or known bugs.

3. Name your parameters and functions properly by following one of the notations such as
Camel or Pascal.

4. Use indentation correctly in your program, other you will lose some points (up to 15
points) for poor readability of the code.

