

ECSE427/COMP310 Page 1 of 3

ECSE427/COMP310 Page 1 of 3

Programming Assignment #2: Printer Spooler
Due date: Check My Courses`

1. Why this assignment?
Synchronization is an important part of modern computer applications that have multiple threads of

execution within them. For example, an Internet browser tool such as Mozilla Firefox would have
multiple threads to manage various user and system tasks simultaneously. Most operating systems and
programming languages provide some primitives for synchronization. Java, for instance, provides several
high-level constructs for synchronization. C, on the other hand, does not provide any constructs by itself.
However, there are various library-based or OS-based solutions for synchronization that can be invoked
from a C program. In this assignment, you learn how to build high-level constructs using some basic
primitives supported by Pthreads/UNIX within C.

2. What is required as part of this assignment?
As part of this assignment, you are expected to solve a simple bounded buffer problem. In this

problem, we will use a simulated print spooler as example. There are C number of clients, each
independently requesting to print a certain number of pages. The spooler has P number of printers to serve
these concurrent requests. The requests are served in a FCFS manner.

Obviously, the requests should be queued in an FCFS buffer of a finite size B, in the spooler. You

need to implement the buffer as a circular array as shown in the figure, for better use of memory. In this
bounded-buffer or producer-consumer problem, you can think of the clients as request producers and the
printers as consumers.

Design and implement a C/Linux program to simulate the above print spooling scenario using the
threading and synchronization primitives of Pthreads library. Each printer is simulated by a thread. The
printing time will be simulated by sleep(n) function, where n is the number of pages to print. A thread
simulates each client as well. A client keeps generating requests at a predefined interval TC(=5sec, say).
Each request consists of n number of pages, where n is a random number between 1 and 10.

You should write the codes for both printer and client threads. Any client, if it finds the spooler
buffer full, sleeps until space becomes available in the buffer (space in the buffer is measured in slots –

ECSE427/COMP310 Page 2 of 3

ECSE427/COMP310 Page 2 of 3

can hold a request of any number of pages). If a printer finds that there is nothing more to print, it goes to
sleep. The printer should be woken up when something becomes available in the print spooler. Similarly,
a sleeping client should be signaled if space becomes available in a previously full buffer.

Your simulator program should take C (number of clients), P (number of printers) and B (buffer size)
as command line parameter or user input. Test your program with different combination of the values for
C, P and B (obviously C,P,B > 0). As output your simulator should print the event trace of the spooler.
Each of the clients (as well as the printers) should have an id (say 0 to C or 0 to P) to identify them in the
trace. Buffer slots are also numbered from 0 to B. A sample snapshot of the event-trace output might look
like the following –

Client 2 has 6 pages to print, puts request in Buffer[2]
Client 5 has 3 pages to print, puts request in Buffer[0]
Printer 0 starts printing 6 pages from Buffer[1]
Client 1 has 8 pages to print, puts request in Buffer[1]
Client 3 has 5 pages to print, puts request in Buffer[2]
Client 4 has 2 pages to print, buffer full, sleeps
Printer 1 starts printing 3 pages from Buffer[0]
Client 4 wakes up, puts request in Buffer[0]
Printer 0 finishes printing 6 pages from Buffer[2]
Printer 0 starts printing 8 pages from Buffer[1]
Printer 1 finishes printing 3 pages from Buffer[0]
Printer 1 starts printing 5 pages from Buffer[2]
Printer 0 finishes printing 8 pages from Buffer[1]
Printer 0 starts printing 2 pages from Buffer[0]
Printer 1 finishes printing 5 pages from Buffer[2]
No request in buffer, Printer 1 sleeps
Printer 0 finishes printing 2 pages from Buffer[0]
No request in buffer, Printer 0 sleeps

Implement your simulator in C using Pthread primitives. While designing a solution for this problem
you should adhere to the following requirement.

• Clients should check for buffer overflow conditions. If a buffer overflow condition is detected, the
client that is trying to enqueue a print job should wait. The wait should be implemented using a
semaphore. You should not busy wait the client until a buffer slot becomes available. Optionally,
you could use a condition variable as well. The pthread library supports condition variables –
although we did not cover those in the class, yet.

• Printers should check for buffer underflow conditions. If a buffer underflow condition is detected, the
printer daemon should wait. Similar to the client, the printer daemon should wait on a condition
variable.

• Manipulation of shared variables such as the circular buffer should be protected using a semaphore.

To complete this assignment, you need to review the pthread lifecycle management functions

discussed in the class and tutorials. In addition, you need to understand the synchronization primitives that

ECSE427/COMP310 Page 3 of 3

ECSE427/COMP310 Page 3 of 3

are covered in the class. Using semaphores from the synchronization primitives is one of the ways of
implementing this assignment. The simple C program shown below illustrates how semaphores can be
used. You can compile the program using gcc filename.c –lpthread.

#include	
 <stdio.h>	

#include	
 <semaphore.h>	

	

sem_t	
 sem;	

int	
 count	
 =	
 1;	

int	
 pcount	
 =	
 1;	

	

void	
 main()	

{	

	
 	
 sem_init(&sem,	
 0,	
 2);	

	

	
 	
 printf("Wait	
 semaphore	
 %d	
 \n",	
 count++);	

	
 	
 sem_wait(&sem);	

	
 	
 printf("Wait	
 semaphore	
 %d	
 \n",	
 count++);	

	
 	
 sem_wait(&sem);	

	

	

	
 	
 printf("Post	
 semaphore	
 %d	
 \n",	
 pcount++);	

	
 	
 sem_post(&sem);	

	

	
 	
 printf("Wait	
 semaphore	
 %d	
 \n",	
 count++);	

	
 	
 sem_wait(&sem);	

}	

3. What should be handed in?
1. You should submit the C program
2. A trace of your program running for example input values
3. A brief documentation if your program is incomplete that shows what you have implemented

and tested in your submission. If nothing works, you need to outline your design and a path
towards complete implementation – partial credit will be assigned in this case.

