COMP-250 Homework One

Neil Edelman - 110121860

2007-09-16

fined by a = b, which should be the worst-case. See Figures 5 - 7 in the Appendix.

Figure 1: Multiplication by Karatsuba Recusion Algorithm.

In Figure 1, it's showing a small, but definate trend downwards. I think.

Figure 2: Multiplication by iterating addition.

In Figure 2, it blows up. We should find that the varience is huge because the function is dependent on the con-

These graphs take a slice of the $\mathbb{R}_3(a,b,t)$ space detent of the numbers, not just the digits. It's too small a sample to tell.

Figure 3: Multiplication by recursion.

In Figure 3, it looks pretty stright. Likely depends on the square.

Figure 4: Multiplication by the Standard Long Algorithm.

In Figure 4, it looks pretty stright; it likely depends on the square as well.

1 Question 4

a) See Table 1 for results.

digits	Karatsuba	Iterative	Recursive	Long
1	0.005 ± 0.08	0.01±0.1	0.002 ± 0.06	0.006±0.09
2	0.04 ± 0.2	0.1 ± 0.3	0.02 ± 0.1	0.009 ± 0.1
4	0.2 ± 0.4	16±9	0.09 ± 0.3	0.02 ± 0.2
8	0.6 ± 0.5	429395	0.4 ± 0.5	0.07 ± 0.3
16	2.1±0.4		1.6 ± 0.5	0.2 ± 0.4
32	6.4±0.6		6.6 ± 0.6	0.9 ± 0.3
64	19.5±0.9		26.2 ± 0.7	3.6 ± 0.5
128	59.3±0.8		105.1 ± 0.9	14.2 ± 0.4
256	178.8±0.7		422.7±0.9	56.4 ± 0.7
512	538.5±0.5		1672	225.2 ± 0.7
1024	1622		6738	894.5±0.5
2048	4888		27146	3577
4096	14676		108944	14289
projected 8192	40000	4×10^{8192}	400000	60000
projected 16384	100000	9×10^{16384}	2000000	200000
n	$0.028 \cdot n^{\log_2 3}$	$0.00054 \cdot 10^{n+1}$	$0.0065 \cdot n^2$	$0.00085 \cdot n^2$

Table 1: This shows t_{mean} (ms) for the experement. Numbers where no error is given had one replica.

b,c,d) I used the maximum time to calculate the constant, then I did a regression check to verify the analysis. The Karatsuba Algorithm is $O(n^{\log_2 3})$. I Wikipediad that shit.

$$n = \frac{14676}{4096^{\log_2 3}}$$

$$n \times 128^{\log_2 3} = 60$$

$$n \times 8192^{\log_2 3} = 40000$$

$$n \times 16384^{\log_2 3} = 100000$$

$$t = 0.028 \cdot n^{\log_2 3}$$

The Iterative Algorithm depends on the contents of the number. Assuming addition is linear (see Figure 5.)

$$n = \frac{429395}{8 \cdot 10^8}$$

$$n \times 8192 \cdot 10^{8192} = 4 \times 10^{8192}$$

$$n \times 16384 \cdot 10^{16384} = 9 \times 10^{16384}$$

$$t = 0.00054 \cdot 10^{n+1}$$

The Recursive Algorithm was found to depend on the square by regression.

$$n = \frac{108944}{4096^2}$$

$$n \times 128^2 = 106$$

$$n \times 8192^2 = 400000$$

$$n \times 16384^2 = 2000000$$

$$t = 0.0065 \cdot n^2$$

The Long Multiplcation Algorithm should was also found to scale with the square.

$$n = \frac{14289}{4096^2}$$

$$n \times 128^2 = 14$$

$$n \times 8192^2 = 60000$$

$$n \times 16384^2 = 200000$$

$$t = 0.00085 \cdot n^2$$

e) We compare Long Multiplication. The analysis for the others is similar.

$$0.0065 \cdot n^{2} = 0.028 \cdot n^{\log_{2} 3}$$

$$n^{0.42} = 32.94$$

$$n = e^{\frac{\ln 32.94}{0.42}}$$

$$n = 4000$$

Well, we noticed that around four-thousand it was catching up so it seems reasonable. This is just a rough estimate. f) When it's 20^{20} ?

Karatsuba

$$t = 0.028 \cdot 20^{20\log_2 3}$$
$$= 4.9 \times 10^{39}$$

Iterative

$$\frac{0.00054 \cdot 10^{20^{20}+1}}{4.9 \times 10^{39}} = 1.1 \cdot 10^{104857599999999999999999}$$

Recursive

$$\frac{0.0065 \cdot 20^40}{4.9 \times 10^{39}} = 100000000000$$

Long

$$\frac{0.00085 \cdot 20^40}{4.9 \times 10^{39}} = 2000000000$$

A Appendix

Figure 5: Addition of two random numbers a = b.

Figure 6: Standard Multipication of two numbers.

Figure 7: Standard Multipication of two numbers.